List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2997253/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biocompatible and Antimicrobial Cellulose Acetate-Collagen Films Containing MWCNTs Decorated with TiO2 Nanoparticles for Potential Biomedical Applications. Nanomaterials, 2022, 12, 239.	4.1	12
2	PEG-Functionalized Magnetite Nanoparticles for Modulation of Microbial Biofilms on Voice Prosthesis. Antibiotics, 2022, 11, 39.	3.7	14
3	Hybrid Materials Based on Multi-Walled Carbon Nanotubes and TiO2 Nanoparticles with Antimicrobial Properties â€. , 2022, 7, .		0
4	Magnetite Nanoparticles Functionalized with Therapeutic Agents for Enhanced ENT Antimicrobial Properties. Antibiotics, 2022, 11, 623.	3.7	17
5	Dextran-Coated Iron Oxide Nanoparticles Loaded with Curcumin for Antimicrobial Therapies. Pharmaceutics, 2022, 14, 1057.	4.5	21
6	Phenotypic and genotypic virulence features of staphylococcal strains isolated from difficult-to-treat skin and soft tissue infections. PLoS ONE, 2021, 16, e0246478.	2.5	17
7	Bioactive Coatings Based on Hydroxyapatite, Kanamycin, and Growth Factor for Biofilm Modulation. Antibiotics, 2021, 10, 160.	3.7	15
8	Collagen-Carboxymethylcellulose Biocomposite Wound-Dressings with Antimicrobial Activity. Materials, 2021, 14, 1153.	2.9	22
9	MAPLE Coatings Embedded with Essential Oil-Conjugated Magnetite for Anti-Biofilm Applications. Materials, 2021, 14, 1612.	2.9	27
10	Composite P(3HB-3HV)-CS Spheres for Enhanced Antibiotic Efficiency. Polymers, 2021, 13, 989.	4.5	2
11	Hybrid Materials Based on Multi-Walled Carbon Nanotubes and Nanoparticles with Antimicrobial Properties. Nanomaterials, 2021, 11, 1415.	4.1	31
12	ZnO Nanoparticles-Modified Dressings to Inhibit Wound Pathogens. Materials, 2021, 14, 3084.	2.9	46
13	Electrochemotherapy and Other Clinical Applications of Electroporation for the Targeted Therapy of Metastatic Melanoma. Materials, 2021, 14, 3985.	2.9	1
14	Biodegradable Alginate Films with ZnO Nanoparticles and Citronella Essential Oil—A Novel Antimicrobial Structure. Pharmaceutics, 2021, 13, 1020.	4.5	85
15	Modulation of Quorum Sensing and Biofilms in Less Investigated Gram-Negative ESKAPE Pathogens. Frontiers in Microbiology, 2021, 12, 676510.	3.5	29
16	Preliminary Study on Light-Activated Antimicrobial Agents as Photocatalytic Method for Protection of Surfaces with Increased Risk of Infections. Materials, 2021, 14, 5307.	2.9	4
17	Biofilm-Resistant Nanocoatings Based on ZnO Nanoparticles and Linalool. Nanomaterials, 2021, 11, 2564.	4.1	14
18	Antimicrobial Films based on Chitosan, Collagen, and ZnO for Skin Tissue Regeneration. Biointerface Research in Applied Chemistry, 2021, 11, 11985-11995.	1.0	12

#	Article	IF	CITATIONS
19	Anti-Biofilm Coatings Based on Chitosan and Lysozyme Functionalized Magnetite Nanoparticles. Antibiotics, 2021, 10, 1269.	3.7	14
20	Atmospheric Pressure Plasma Activation of Hydroxyapatite to Improve Fluoride Incorporation and Modulate Bacterial Biofilm. International Journal of Molecular Sciences, 2021, 22, 13103.	4.1	6
21	Co doped ZnO thin films deposited by spin coating as antibacterial coating for metallic implants. Ceramics International, 2020, 46, 3904-3911.	4.8	37
22	Magnetite Nanoparticles and Essential Oils Systems for Advanced Antibacterial Therapies. International Journal of Molecular Sciences, 2020, 21, 7355.	4.1	36
23	Polyphenols of Honeybee Origin with Applications in Dental Medicine. Antibiotics, 2020, 9, 856.	3.7	8
24	In Situ and Ex Situ Designed Hydroxyapatite: Bacterial Cellulose Materials with Biomedical Applications. Materials, 2020, 13, 4793.	2.9	19
25	Nanostructured Thin Coatings Containing Anthriscus sylvestris Extract with Dual Bioactivity. Molecules, 2020, 25, 3866.	3.8	6
26	Trends in the Immunomodulatory Effects of Cordyceps militaris: Total Extracts, Polysaccharides and Cordycepin. Frontiers in Pharmacology, 2020, 11, 575704.	3.5	35
27	<scp>STED</scp> nanoscopy of <scp>KK114</scp> â€stained pathogenic bacteria. Journal of Biophotonics, 2020, 13, e202000097.	2.3	5
28	Nanosystems for Improved Targeted Therapies in Melanoma. Journal of Clinical Medicine, 2020, 9, 318.	2.4	30
29	Wound Dressings Coated with Silver Nanoparticles and Essential Oils for The Management of Wound Infections. Materials, 2020, 13, 1682.	2.9	23
30	The Role of Intestinal Microbiota and Microbial Metabolites in the Development of Host Metabolic Syndrome. Food Chemistry, Function and Analysis, 2020, , 191-209.	0.2	2
31	Optimized Synthesis Approaches of Metal Nanoparticles with Antimicrobial Applications. Journal of Nanomaterials, 2020, 2020, 1-14.	2.7	42
32	Bioactive Surfaces of Polylactide and Silver Nanoparticles for the Prevention of Microbial Contamination. Materials, 2020, 13, 768.	2.9	31
33	SSNOMBACTER: A collection of scattering-type scanning near-field optical microscopy and atomic force microscopy images of bacterial cells. GigaScience, 2020, 9, .	6.4	11
34	Use of Biopolymers in Mucosally-Administered Vaccinations for Respiratory Disease. Materials, 2019, 12, 2445.	2.9	21
35	Nanomagnetite-embedded PLGA Spheres for Multipurpose Medical Applications. Materials, 2019, 12, 2521.	2.9	11
36	Magnetic Particles for Advanced Molecular Diagnosis. Materials, 2019, 12, 2158.	2.9	25

#	Article	IF	CITATIONS
37	Nanomaterials for Wound Healing and Infection Control. Materials, 2019, 12, 2176.	2.9	263
38	Electrospun Polyethylene Terephthalate Nanofibers Loaded with Silver Nanoparticles: Novel Approach in Anti-Infective Therapy. Journal of Clinical Medicine, 2019, 8, 1039.	2.4	33
39	Suberin/ <i>trans-</i> Cinnamaldehyde Oil Nanoparticles with Antimicrobial Activity and Anticancer Properties When Loaded with Paclitaxel. ACS Applied Bio Materials, 2019, 2, 3484-3497.	4.6	10
40	Applications of Nanodiamonds in the Detection and Therapy of Infectious Diseases. Materials, 2019, 12, 1639.	2.9	29
41	Antimicrobial Wound Dressings as Potential Materials for Skin Tissue Regeneration. Materials, 2019, 12, 1859.	2.9	46
42	Effects of Coffee on Intestinal Microbiota, Immunity, and Disease. , 2019, , 391-421.		3
43	Antimicrobial applications of MAPLE processed coatings based on PLGA and lincomycin functionalized magnetite nanoparticles. Applied Surface Science, 2019, 484, 587-599.	6.1	14
44	Laser Processed Antimicrobial Nanocomposite Based on Polyaniline Grafted Lignin Loaded with Gentamicin-Functionalized Magnetite. Polymers, 2019, 11, 283.	4.5	15
45	Core–shell nanomaterials for infection and cancer therapy. , 2019, , 197-211.		0
46	Novel Therapeutic Strategies Applied to Pseudomonas aeruginosa Infections in Cystic Fibrosis. Materials, 2019, 12, 4093.	2.9	15
47	In vitro and in vivo studies of novel fabricated bioactive dressings based on collagen and zinc oxide 3D scaffolds. International Journal of Pharmaceutics, 2019, 557, 199-207.	5.2	68
48	Phenotypic and genotypic evaluation of adherence and biofilm development in <i>Candida albicans</i> respiratory tract isolates from hospitalized patients. Romanian Journal of Laboratory Medicine, 2019, 27, 73-83.	0.2	2
49	Complexes of Cu (II) with a-Ketoglutaric Acid and 1- (o-tolyl) Biguanide Synthesis, characterization and biological Activity. Revista De Chimie (discontinued), 2019, 70, 3603-3610.	0.4	2
50	Structure-grain size-synthesis route of silver nanoparticles: a correlation with the cytotoxic effect. Romanian Journal of Morphology and Embryology, 2019, 60, 617-628.	0.8	2
51	MAPLE fabricated coatings based on magnetite nanoparticles embedded into biopolymeric spheres resistant to microbial colonization. Applied Surface Science, 2018, 448, 230-236.	6.1	15
52	Synthesis, characterization, and biological activity of some complex combinations of nickel with α-ketoglutaric acid and 1-(o-tolyl)biguanide. Comptes Rendus Chimie, 2018, 21, 32-40.	0.5	4
53	Production and Characterization of Antimicrobial Electrospun Nanofibers Containing Polyurethane, Zirconium Oxide and Zeolite. BioNanoScience, 2018, 8, 154-165.	3.5	9
54	Antibiofilm Coatings Based on PLGA and Nanostructured Cefepime-Functionalized Magnetite. Nanomaterials, 2018, 8, 633.	4.1	23

6

#	Article	IF	CITATIONS
55	Cellulose acetate - essential oil nanocapsules with antimicrobial activity for biomedical applications. Colloids and Surfaces B: Biointerfaces, 2018, 172, 471-479.	5.0	50
56	MAPLE deposition of Nigella sativa functionalized Fe3O4 nanoparticles for antimicrobial coatings. Applied Surface Science, 2018, 455, 513-521.	6.1	24
57	Aspects of Gut Microbiota and Immune System Interactions in Infectious Diseases, Immunopathology, and Cancer. Frontiers in Immunology, 2018, 9, 1830.	4.8	371
58	Introduction in Nutraceutical and Medicinal Foods. , 2018, , 1-12.		3
59	Nanocoatings for Chronic Wound Repair—Modulation of Microbial Colonization and Biofilm Formation. International Journal of Molecular Sciences, 2018, 19, 1179.	4.1	90
60	Lincomycin–embedded PANI–based coatings for biomedical applications. Applied Surface Science, 2018, 455, 653-666.	6.1	7
61	Evaluation of the antibiotic susceptibility and virulence factors production in Staphylococcus spp. strains used to obtain autologous vaccines. Infectio Ro, 2018, 2, 27.	0.0	1
62	Manufacturing nanostructured chitosan-based 2D sheets with prolonged antimicrobial activity. Romanian Journal of Morphology and Embryology, 2018, 59, 517-525.	0.8	6
63	Laser deposition of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) – lysozyme microspheres based coatings with anti-microbial properties. International Journal of Pharmaceutics, 2017, 521, 184-195.	5.2	18
64	Antimicrobial polycaprolactone/polyethylene glycol embedded lysozyme coatings of Ti implants for osteoblast functional properties in tissue engineering. Applied Surface Science, 2017, 417, 234-243.	6.1	31
65	Bioactive mesoporous silica nanostructures with anti-microbial and anti-biofilm properties. International Journal of Pharmaceutics, 2017, 531, 35-46.	5.2	33
66	Electrospun Fiber Pads of Cellulose Acetate and Essential Oils with Antimicrobial Activity. Nanomaterials, 2017, 7, 84.	4.1	74
67	Collagen-Nanoparticles Composites for Wound Healing and Infection Control. Metals, 2017, 7, 516.	2.3	21
68	Nanotherapeutics in the management of infections and cancer. , 2017, , 163-189.		1
69	Soft tissue engineering and microbial infections. , 2016, , 1-29.		5
70	Bioactive nanomaterials for cartilage and muscle regeneration. , 2016, , 261-297.		0
71	Inorganic nanoarchitectonics designed for drug delivery and anti-infective surfaces. , 2016, , 301-327.		21

#	Article	IF	CITATIONS
73	PLA and PLGA nanoarchitectonics for improving anti-infective drugs efficiency. , 2016, , 451-482.		Ο
74	Silver Nanocoatings for Reducing the Exogenous Microbial Colonization of Wound Dressings. Materials, 2016, 9, 345.	2.9	38
75	Antimicrobial Nanostructured Bioactive Coating Based on Fe3O4 and Patchouli Oil for Wound Dressing. Metals, 2016, 6, 103.	2.3	26
76	Biocompatible 3D Matrix with Antimicrobial Properties. Molecules, 2016, 21, 115.	3.8	5
77	Bioactive ZnO Coatings Deposited by MAPLE—An Appropriate Strategy to Produce Efficient Anti-Biofilm Surfaces. Molecules, 2016, 21, 220.	3.8	26
78	Fabrication, Characterization, and Evaluation of Bionanocomposites Based on Natural Polymers and Antibiotics for Wound Healing Applications. Molecules, 2016, 21, 761.	3.8	22
79	Advanced Nanobiomaterials: Vaccines, Diagnosis and Treatment of Infectious Diseases. Molecules, 2016, 21, 867.	3.8	92
80	Polylactic Acid—Lemongrass Essential Oil Nanocapsules with Antimicrobial Properties. Pharmaceuticals, 2016, 9, 42.	3.8	46
81	Nanosized Drug Delivery Systems in Gastrointestinal Targeting: Interactions with Microbiota. Pharmaceuticals, 2016, 9, 62.	3.8	40
82	Methods of Synthesis, Properties and Biomedical Applications of CuO Nanoparticles. Pharmaceuticals, 2016, 9, 75.	3.8	257
83	Biocompatible hybrid silica nanobiocomposites for the efficient delivery of anti-staphylococcal drugs. International Journal of Pharmaceutics, 2016, 510, 532-542.	5.2	9
84	Mesoporous silica coatings for cephalosporin active release at the bone-implant interface. Applied Surface Science, 2016, 374, 165-171.	6.1	20
85	Biocompatible cephalosporin-hydroxyapatite-poly(lactic-co-glycolic acid)-coatings fabricated by MAPLE technique for the prevention of bone implant associated infections. Applied Surface Science, 2016, 374, 387-396.	6.1	19
86	Control of biofilm-associated infections by signaling molecules and nanoparticles. International Journal of Pharmaceutics, 2016, 510, 409-418.	5.2	30
87	Thin coatings based on ZnO@C18-usnic acid nanoparticles prepared by MAPLE inhibit the development of Salmonella enterica early biofilm growth. Applied Surface Science, 2016, 374, 318-325.	6.1	18
88	Nanostructured Approaches for the Targeted Delivery of Antibiotics in Difficult Infections. Current Organic Chemistry, 2016, 21, 45-52.	1.6	3
89	Phenotypic and Genetic Evaluation of the Influence of Pseudomonas aeruginosa Culture Fractions on the Human Mesenchymal Stem Cells Viability, Apoptotic Pathways and Cytokine Profile. Current Stem Cell Research and Therapy, 2016, 12, 175-180.	1.3	3
90	Biopolymers Tailored For Intelligent Scaffolding and Drug Delivery. Current Organic Chemistry, 2016, 20, 2989-2995.	1.6	0

#	Article	IF	CITATIONS
91	Antimicrobial coatings based on zinc oxide and orange oil for improved bioactive wound dressings and other applications. Romanian Journal of Morphology and Embryology, 2016, 57, 107-14.	0.8	15

92 Editorial (Thematic Issue: Antimicrobial Strategies based on Natural Products: Recent Progress in Bio) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

93	Nanostructured mesoporous silica: new perspectives for fighting antimicrobial resistance. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	4
94	Magnetite Nanostructures. , 2015, , 51-67.		0
95	Fabrication and characterization of functionalized surfaces with 3-amino propyltrimethoxysilane films for anti-infective therapy applications. Applied Surface Science, 2015, 336, 401-406.	6.1	10
96	MAPLE fabricated magnetite@Melissa officinalis and poly lactic acid: chitosan coated surfaces with anti-staphylococcal properties. Journal of Sol-Gel Science and Technology, 2015, 73, 612-619.	2.4	11
97	Poly(lactic-co-glycolic) acid/chitosan microsphere thin films functionalized with Cinnamomi aetheroleum and magnetite nanoparticles for preventing the microbial colonization of medical surfaces. Journal of Sol-Gel Science and Technology, 2015, 73, 679-686.	2.4	7
98	Gamma-cyclodextrin/usnic acid thin film fabricated by MAPLE for improving the resistance of medical surfaces to Staphylococcus aureus colonization. Applied Surface Science, 2015, 336, 407-412.	6.1	19
99	Carvone functionalized iron oxide nanostructures thin films prepared by MAPLE for improved resistance to microbial colonization. Journal of Sol-Gel Science and Technology, 2015, 73, 605-611.	2.4	12
100	Magnetite Nanocomposites Thin Coatings Prepared by MAPLE to Prevent Microbial Colonization of Medical Surfaces. Advanced Structured Materials, 2015, , 311-339.	0.5	2
101	MAPLE fabrication of thin films based on kanamycin functionalized magnetite nanoparticles with anti-pathogenic properties. Applied Surface Science, 2015, 336, 188-195.	6.1	24
102	Epidemiology of Tropical Neglected Diseases in Ecuador in the Last 20 Years. PLoS ONE, 2015, 10, e0138311.	2.5	21
103	Prosthetic Devices with Nanostructurated Surfaces for Increased Resistance to Microbial Colonization. Current Pharmaceutical Biotechnology, 2015, 16, 112-120.	1.6	5
104	Antimicrobial Chitosan based Formulations with Impact on Different Biomedical Applications. Current Pharmaceutical Biotechnology, 2015, 16, 128-136.	1.6	41
105	Microbial Biofilms: Impact on the Pathogenesis of Periodontitis, Cystic Fibrosis, Chronic Wounds and Medical Device-Related Infections. Current Topics in Medicinal Chemistry, 2015, 15, 1552-1576.	2.1	83
106	Magnetite Nanoshuttles for Fighting Staphylococcus aureus Infections: A Recent Review. Current Topics in Medicinal Chemistry, 2015, 15, 1589-1595.	2.1	8
107	Magnetite Nanostructures as Novel Strategies for Anti-Infectious Therapy. Molecules, 2014, 19, 12710-12726.	3.8	58
108	Antimicrobial nanospheres thin coatings prepared by advanced pulsed laser technique. Beilstein Journal of Nanotechnology, 2014, 5, 872-880.	2.8	31

#	Article	IF	CITATIONS
109	Role ofPseudomonas aeruginosaquorum sensing (QS) molecules on the viability and cytokine profile of human mesenchymal stem cells. Virulence, 2014, 5, 303-310.	4.4	30
110	MAPLE fabricated magnetite@eugenol and (3-hidroxybutyric acid-co-3-hidroxyvaleric acid)–polyvinyl alcohol microspheres coated surfaces with anti-microbial properties. Applied Surface Science, 2014, 306, 16-22.	6.1	51
111	Synthesis and characterization of a novel controlled release zinc oxide/gentamicin–chitosan composite with potential applications in wounds care. International Journal of Pharmaceutics, 2014, 463, 161-169.	5.2	108
112	New Molecular Strategies for Reducing Implantable Medical Devices Associated Infections. Current Medicinal Chemistry, 2014, 21, 3375-3382.	2.4	21
113	Functionalized antibiofilm thin coatings based on PLA–PVA microspheres loaded with usnic acid natural compounds fabricated by MAPLE. Applied Surface Science, 2014, 302, 262-267.	6.1	64
114	Anionic polymers and 10nm Fe3O4@UA wound dressings support human foetal stem cells normal development and exhibit great antimicrobial properties. International Journal of Pharmaceutics, 2014, 463, 146-154.	5.2	37
115	Plackett–Burman experimental design for bacterial cellulose–silica composites synthesis. Materials Science and Engineering C, 2014, 42, 280-288.	7.3	32
116	MAPLE Fabricated Fe3O4@Cinnamomum verum Antimicrobial Surfaces for Improved Gastrostomy Tubes. Molecules, 2014, 19, 8981-8994.	3.8	38
117	Biocompatible Fe3O4 Increases the Efficacy of Amoxicillin Delivery against Gram-Positive and Gram-Negative Bacteria. Molecules, 2014, 19, 5013-5027.	3.8	59
118	Novel Drug Delivery Magnetite Nano-systems Used in Antimicrobial Therapy. Current Organic Chemistry, 2014, 18, 185-191.	1.6	19
119	Metal Oxide Nanoparticles: Potential Uses in Biomedical Applications. Current Proteomics, 2014, 11, 139-149.	0.3	30
120	Magnetite nanostructures functionalized with cytostatic drugs exhibit great anti-tumoral properties without application of high amplitude alternating magnetic fields. Romanian Journal of Morphology and Embryology, 2014, 55, 357-62.	0.8	5
121	Silica network improve the effect of fludarabine and paclitaxel on HCT8 cell line. Romanian Journal of Morphology and Embryology, 2014, 55, 545-51.	0.8	4
122	Iron oxide nanoparticles modulate the interaction of different antibiotics with cellular membranes. Romanian Journal of Morphology and Embryology, 2014, 55, 849-56.	0.8	20
123	Identification and phenotypic characterization of the most frequent bacterial etiologies in chronic skin ulcers. Romanian Journal of Morphology and Embryology, 2014, 55, 1401-8.	0.8	29
124	Efficient surface functionalization of wound dressings by a phytoactive nanocoating refractory to <i>Candida albicans</i> biofilm development. Biointerphases, 2013, 8, 12.	1.6	28
125	Water dispersible cross-linked magnetic chitosan beads for increasing the antimicrobial efficiency of aminoglycoside antibiotics. International Journal of Pharmaceutics, 2013, 454, 233-240.	5.2	67
126	Biohybrid Nanostructured Iron Oxide Nanoparticles and Satureja hortensis to Prevent Fungal Biofilm Development. International Journal of Molecular Sciences, 2013, 14, 18110-18123.	4.1	84

#	Article	IF	CITATIONS
127	Modified wound dressing with phyto-nanostructured coating to prevent staphylococcal and pseudomonal biofilm development. Nanoscale Research Letters, 2012, 7, 690.	5.7	50