
Yang D Teng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2997226/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1α/CXC chemokine receptor 4 pathway. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 18117-18122.	7.1	1,023
2	Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3024-3029.	7.1	919
3	The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nature Biotechnology, 2002, 20, 1111-1117.	17.5	541
4	Behavioral improvement in a primate Parkinson's model is associated with multiple homeostatic effects of human neural stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12175-12180.	7.1	339
5	Minocycline inhibits contusion-triggered mitochondrial cytochrome <i>c</i> release and mitigates functional deficits after spinal cord injury. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3071-3076.	7.1	309
6	Dose-dependent reduction of tissue loss and functional impairment after spinal cord trauma with the AMPA/kainate antagonist NBQX. Journal of Neuroscience, 1994, 14, 6598-6607.	3.6	238
7	Brain Tumor Tropism of Transplanted Human Neural Stem Cells Is Induced by Vascular Endothelial Growth Factor. Neoplasia, 2005, 7, 623-630.	5.3	185
8	Basic Fibroblast Growth Factor Increases Long-Term Survival of Spinal Motor Neurons and Improves Respiratory Function after Experimental Spinal Cord Injury. Journal of Neuroscience, 1999, 19, 7037-7047.	3.6	138
9	Local Blockade of Sodium Channels by Tetrodotoxin Ameliorates Tissue Loss and Long-Term Functional Deficits Resulting from Experimental Spinal Cord Injury. Journal of Neuroscience, 1997, 17, 4359-4366.	3.6	135
10	Communication via gap junctions underlies early functional and beneficial interactions between grafted neural stem cells and the host. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5184-5189.	7.1	133
11	Probing the lithium-response pathway in hiPSCs implicates the phosphoregulatory set-point for a cytoskeletal modulator in bipolar pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4462-E4471.	7.1	129
12	2,3-Dihydroxy-6-Nitro-7-Sulfamoyl-Benzo(<i>f</i>)Quinoxaline Reduces Glial Loss and Acute White Matter Pathology after Experimental Spinal Cord Contusion. Journal of Neuroscience, 1999, 19, 464-475.	3.6	121
13	Effects of the Sodium Channel Blocker Tetrodotoxin on Acute White Matter Pathology After Experimental Contusive Spinal Cord Injury. Journal of Neuroscience, 1999, 19, 6122-6133.	3.6	105
14	Basic and acidic fibroblast growth factors protect spinal motor neurones <i>in vivo</i> after experimental spinal cord injury. European Journal of Neuroscience, 1998, 10, 798-802.	2.6	94
15	Multimodal Actions of Neural Stem Cells in a Mouse Model of ALS: A Meta-Analysis. Science Translational Medicine, 2012, 4, 165ra164.	12.4	91
16	Pathophysiological Bases of Comorbidity: Traumatic Brain Injury and Post-Traumatic Stress Disorder. Journal of Neurotrauma, 2018, 35, 210-225.	3.4	91
17	Establishing a model spinal cord injury in the African green monkey for the preclinical evaluation of biodegradable polymer scaffolds seeded with human neural stem cells. Journal of Neuroscience Methods, 2010, 188, 258-269.	2.5	86
18	Defining recovery neurobiology of injured spinal cord by synthetic matrix-assisted hMSC implantation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E820-E829.	7.1	85

YANG D TENG

#	Article	IF	CITATIONS
19	Neural Stem Cells Implanted into MPTP-Treated Monkeys Increase the Size of Endogenous Tyrosine Hydroxylase-Positive Cells Found in the Striatum: A Return to Control Measures. Cell Transplantation, 2005, 14, 183-192.	2.5	77
20	Evidence that local non-NMDA receptors contribute to functional deficits in contusive spinal cord injury. Brain Research, 1992, 586, 140-143.	2.2	71
21	Respiratory Abnormalities Resulting from Midcervical Spinal Cord Injury and their Reversal by Serotonin 1A Agonists in Conscious Rats. Journal of Neuroscience, 2005, 25, 4550-4559.	3.6	71
22	Nna1 Mediates Purkinje Cell Dendritic Development via Lysyl Oxidase Propeptide and NF-κB Signaling. Neuron, 2010, 68, 45-60.	8.1	67
23	Blockade of Peroxynitrite-Induced Neural Stem Cell Death in the Acutely Injured Spinal Cord by Drug-Releasing Polymer. Stem Cells, 2009, 27, 1212-1222.	3.2	66
24	Stem Cells and Spinal Cord Repair. New England Journal of Medicine, 2012, 366, 1940-1942.	27.0	64
25	Neuronal gene delivery by negatively charged pullulan–spermine/DNA anioplexes. Biomaterials, 2009, 30, 1815-1826.	11.4	63
26	Cograft of neural stem cells and schwann cells overexpressing TrkC and neurotrophin-3 respectively after rat spinal cord transection. Biomaterials, 2011, 32, 7454-7468.	11.4	61
27	Spinal cord injury causes rapid osteoclastic resorption and growth plate abnormalities in growing rats (SCI-induced bone loss in growing rats). Osteoporosis International, 2008, 19, 645-652.	3.1	59
28	Neural Stem Cell Biology May Be Well Suited for Improving Brain Tumor Therapies. Cancer Journal (Sudbury, Mass), 2003, 9, 189-204.	2.0	58
29	Alleviation of chronic pain following rat spinal cord compression injury with multimodal actions of huperzine A. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E746-55.	7.1	58
30	Microvascular decompression as a surgical management for trigeminal neuralgia: long-term follow-up and review of the literature. Neurosurgical Review, 2009, 32, 87-94.	2.4	54
31	Patterned Electrospun Nanofiber Matrices Via Localized Dissolution: Potential for Guided Tissue Formation. Advanced Materials, 2014, 26, 8192-8197.	21.0	50
32	Functional Multipotency of Stem Cells: A Conceptual Review of Neurotrophic Factor-Based Evidence and Its Role in Translational Research. Current Neuropharmacology, 2011, 9, 574-585.	2.9	45
33	Adrenergic activation attenuates astrocyte swelling induced by hypotonicity and neurotrauma. Glia, 2016, 64, 1034-1049.	4.9	45
34	Pharmacology of riluzole in acute spinal cord injury. Journal of Neurosurgery: Spine, 2012, 17, 129-140.	1.7	43
35	Physical activity-mediated functional recovery after spinal cord injury: potential roles of neural stem cells. Regenerative Medicine, 2006, 1, 763-776.	1.7	42
36	Translational spinal cord injury research. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 109, 411-433.	1.8	37

Yang D Teng

#	Article	IF	CITATIONS
37	Human Neural Stem Cells Survive Long Term in the Midbrain of Dopamine-Depleted Monkeys After GDNF Overexpression and Project Neurites Toward an Appropriate Target. Stem Cells Translational Medicine, 2014, 3, 692-701.	3.3	36
38	Therapeutic effects of clenbuterol in a murine model of amyotrophic lateral sclerosis. Neuroscience Letters, 2006, 397, 155-158.	2.1	35
39	Intra-Amniotic Delivery of Amniotic-Derived Neural Stem Cells in a Syngeneic Model of Spina Bifida. Fetal Diagnosis and Therapy, 2013, 34, 38-43.	1.4	35
40	Self-renewal induced efficiently, safely, and effective therapeutically with one regulatable gene in a human somatic progenitor cell. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4876-4881.	7.1	32
41	Stemness Enhancement of Human Neural Stem Cells following Bone Marrow MSC Coculture. Cell Transplantation, 2015, 24, 645-659.	2.5	32
42	Neural and anatomical abnormalities of the gastrointestinal system resulting from contusion spinal cord injury. Neuroscience, 2008, 154, 1627-1638.	2.3	31
43	Biological Approaches to Treating Intervertebral Disk Degeneration: Devising Stem Cell Therapies. Cell Transplantation, 2015, 24, 2197-2208.	2.5	31
44	Neuromusculoskeletal Modeling-Based Prostheses for Recovery After Spinal Cord Injury. Frontiers in Neurorobotics, 2019, 13, 97.	2.8	31
45	Cancer Stem Cells or Tumor Survival Cells?. Stem Cells and Development, 2018, 27, 1466-1478.	2.1	28
46	Purkinje neuron degeneration in nervous (nr) mutant mice is mediated by a metabolic pathway involving excess tissue plasminogen activator. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7847-7852.	7.1	27
47	Functional multipotency of stem cells: Biological traits gleaned from neural progeny studies. Seminars in Cell and Developmental Biology, 2019, 95, 74-83.	5.0	27
48	Important precautions when deriving patient-specific neural elements from pluripotent cells. Cytotherapy, 2009, 11, 815-824.	0.7	26
49	Roles of Kinins in the Nervous System. Cell Transplantation, 2015, 24, 613-623.	2.5	24
50	ATP and spontaneous calcium oscillations control neural stem cell fate determination in Huntington's disease: a novel approach for cell clock research. Molecular Psychiatry, 2021, 26, 2633-2650.	7.9	24
51	Patents on Technologies of Human Tissue and Organ Regeneration from Pluripotent Human Embryonic Stem Cells. Recent Patents on Regenerative Medicine, 2011, 1, 142-163.	0.4	23
52	Functional Multipotency of Stem Cells and Recovery Neurobiology of Injured Spinal Cords. Cell Transplantation, 2019, 28, 451-459.	2.5	22
53	Non-invasive approaches to functional recovery after spinal cord injury: Therapeutic targets and multimodal device interventions. Experimental Neurology, 2021, 339, 113612.	4.1	22
54	Down-regulation of MicroRNA-126 in Glioblastoma and its Correlation with Patient Prognosis: A Pilot Study. Anticancer Research, 2016, 36, 6691-6698.	1.1	22

YANG D TENG

#	Article	IF	CITATIONS
55	Targeted Treatment of Experimental Spinal Cord Glioma With Dual Gene-Engineered Human Neural Stem Cells. Neurosurgery, 2016, 79, 481-491.	1.1	20
56	Physical impacts of PLGA scaffolding on hMSCs: Recovery neurobiology insight for implant design to treat spinal cord injury. Experimental Neurology, 2019, 320, 112980.	4.1	19
57	Medical Gas Therapy for Tissue, Organ, and CNS Protection: A Systematic Review of Effects, Mechanisms, and Challenges. Advanced Science, 2022, 9, e2104136.	11.2	18
58	Effects of Magnetite Nanoparticles and Static Magnetic Field on Neural Differentiation of Pluripotent Stem Cells. Stem Cell Reviews and Reports, 2022, 18, 1337-1354.	3.8	18
59	Evaluation of cardiorespiratory parameters in rats after spinal cord trauma and treatment with NBQX, an antagonist of excitatory amino acid receptors. Neuroscience Letters, 1996, 209, 5-8.	2.1	17
60	Association of VKORC1-1639G>A polymorphism with susceptibility to ossification of the posterior longitudinal ligament of the spine: a Korean study. Acta Neurochirurgica, 2013, 155, 1937-1942.	1.7	16
61	Spinal cord astrocytomas: progresses in experimental and clinical investigations for developing recovery neurobiology-based novel therapies. Experimental Neurology, 2019, 311, 135-147.	4.1	16
62	Association of transforming growth factor-beta 1 gene polymorphism with genetic susceptibility to ossification of the posterior longitudinal ligament in Korean patients. Genetics and Molecular Research, 2013, 12, 4807-4816.	0.2	15
63	Single muscle fiber size and contractility after spinal cord injury in rats. Muscle and Nerve, 2006, 34, 101-104.	2.2	14
64	Peripheral Nerve Regeneration: Mechanism, Cell Biology, and Therapies. BioMed Research International, 2014, 2014, 1-2.	1.9	11
65	Establishing an Organotypic System for Investigating Multimodal Neural Repair Effects of Human Mesenchymal Stromal Stem Cells. Current Protocols in Stem Cell Biology, 2018, 47, e58.	3.0	10
66	Updates on Human Neural Stem Cells: From Generation, Maintenance, and Differentiation to Applications in Spinal Cord Injury Research. Results and Problems in Cell Differentiation, 2018, 66, 233-248.	0.7	5
67	A Combinatorial Approach with Cerebellar Tonsil Suspension to Treating Symptomatic Chiari Malformation Type I in Adults: A Retrospective Study. World Neurosurgery, 2020, 143, e19-e35.	1.3	4
68	Prelude to the special issue on novel neurocircuit, cellular and molecular targets for developing functional rehabilitation therapies of neurotrauma. Experimental Neurology, 2021, 341, 113689.	4.1	2
69	An ioMRI-assisted case of cervical intramedullary diffuse glioma resection. Cancer Management and Research, 2018, 10, 4689-4694.	1.9	Ο