
Jm César De SÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2997099/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermal study of a cladding layer of Inconel 625 in Directed Energy Deposition (DED) process using a phase-field model. International Journal of Advanced Manufacturing Technology, 2022, 119, 3975-3993.	1.5	7
2	Damage Evolution Simulations via a Coupled Crystal Plasticity and Cohesive Zone Model for Additively Manufactured Austenitic SS 316L DED Components. Metals, 2022, 12, 1096.	1.0	0
3	Micromechanically-motivated phase field approach to ductile fracture. International Journal of Damage Mechanics, 2021, 30, 46-76.	2.4	11
4	Experimental and computational analysis of additively manufactured tensile specimens: Assessment of localized-cooling rate and ductile fracture using the Gurson– Tvergaard–Needleman damage model. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2021, 235, 1430-1442.	0.7	4
5	Assessment of scatter on material properties and its influence on formability in hole expansion. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2021, 235, 1262-1270.	0.7	1
6	Fracture analysis in directed energy deposition (DED) manufactured 316L stainless steel using a phase-field approach. Finite Elements in Analysis and Design, 2020, 177, 103417.	1.7	30
7	Earing profile and wall thickness prediction of a cylindrical cup for dual-phase steels using different yield criteria in FE simulation. AIP Conference Proceedings, 2019, , .	0.3	2
8	A simple and robust Coulomb frictional algorithm based on 3 additional degrees-of-freedom and smoothing. Finite Elements in Analysis and Design, 2019, 167, 103321.	1.7	7
9	General constitutive updating for finite strain formulations based on assumed strains and the Jacobian. Finite Elements in Analysis and Design, 2018, 143, 32-45.	1.7	2
10	Assessment of different ductile damage models and experimental validation. International Journal of Material Forming, 2018, 11, 435-444.	0.9	4
11	Effective 2D and 3D crack propagation with local mesh refinement and the screened Poisson equation. Engineering Fracture Mechanics, 2018, 189, 339-360.	2.0	149
12	A simple and unified implementation of phase field and gradient damage models. Advanced Modeling and Simulation in Engineering Sciences, 2018, 5, .	0.7	28
13	Fully-coupled piezoelectric assumed-strain least-squares nonlinear shell. Thin-Walled Structures, 2018, 131, 631-645.	2.7	4
14	Formability prediction for AHSS materials using damage models. Journal of Physics: Conference Series, 2017, 843, 012018.	0.3	6
15	Finite-strain low order shell using least-squares strains and two-parameter thickness extensibility. European Journal of Mechanics, A/Solids, 2017, 61, 293-314.	2.1	3
16	A study on the performance of ductile failure models under different range of stress triaxiality states with experimental validation. Journal of Physics: Conference Series, 2016, 734, 032122.	0.3	2
17	Non-local models for ductile failure. Journal of Physics: Conference Series, 2016, 734, 032133.	0.3	0
18	Semi-implicit finite strain constitutive integration and mixed strain/stress control based on intermediate configurations. Engineering Structures, 2016, 124, 344-360.	2.6	5

Jм César De SÃi

#	Article	IF	CITATIONS
19	A novel two-stage discrete crack method based on the screened Poisson equation and local mesh refinement. Computational Mechanics, 2016, 58, 1003-1018.	2.2	51
20	Evaluation of ductile failure models in Sheet Metal Forming. MATEC Web of Conferences, 2016, 80, 03004.	0.1	12
21	Integrated thermomechanical model for forming of glass containers. MATEC Web of Conferences, 2016, 80, 16010.	0.1	3
22	Structural analysis of a cross car beam using finite element models. International Journal of Structural Integrity, 2015, 6, 759-774.	1.8	0
23	A finite strain quadrilateral based on least-squares assumed strains. Engineering Structures, 2015, 100, 1-16.	2.6	4
24	The Axisymmetric Analysis of Circular Plates Using the Radial Point Interpolation Method. International Journal for Computational Methods in Engineering Science and Mechanics, 2015, 16, 336-353.	1.4	19
25	Coulomb frictional contact by explicit projection in the cone for finite displacement quasi-static problems. Computational Mechanics, 2015, 55, 57-72.	2.2	19
26	Finite strain quadrilateral shell using least-squares fit of relative Lagrangian in-plane strains. Finite Elements in Analysis and Design, 2015, 98, 26-40.	1.7	8
27	Semi-implicit finite strain constitutive integration of porous plasticity models. Finite Elements in Analysis and Design, 2015, 104, 41-55.	1.7	7
28	A semi-implicit finite strain shell algorithm using in-plane strains based on least-squares. Computational Mechanics, 2015, 55, 673-696.	2.2	11
29	A simple assumed-strain quadrilateral shell element for finite strains and fracture. Engineering With Computers, 2015, 31, 691-709.	3.5	3
30	Assessment and comparison of non-local integral models for ductile damage. International Journal of Damage Mechanics, 2014, 23, 261-296.	2.4	29
31	An extended GTN model for ductile fracture under high and low stress triaxiality. International Journal of Plasticity, 2014, 54, 193-228.	4.1	167
32	Sensitivity analysis based crack propagation criterion for compressible and (near) incompressible hyperelastic materials. Finite Elements in Analysis and Design, 2014, 82, 1-15.	1.7	3
33	Blending moving least squares techniques with NURBS basis functions for nonlinear isogeometric analysis. Computational Mechanics, 2014, 53, 1327-1340.	2.2	16
34	A frictional mortar contact approach for the analysis of large inelastic deformation problems. International Journal of Solids and Structures, 2014, 51, 1697-1715.	1.3	27
35	Consistent tangent operators for implicit non-local models of integral type. Computers and Structures, 2014, 141, 59-73.	2.4	7
36	Damage driven crack initiation and propagation in ductile metals using XFEM. Computational Mechanics, 2013, 52, 161-179.	2.2	63

Jм César De SÃi

#	Article	IF	CITATIONS
37	Evaluation of shear mechanisms and influence of the calibration point on the numerical results of the GTN model. International Journal of Mechanical Sciences, 2013, 75, 407-422.	3.6	21
38	Ductile damage at large plastic strains: Models, numerical issues and transition to fracture. , 2013, , .		0
39	Towards energetic consistent transition from damage to fracture. , 2013, , .		0
40	Locking and its treatment for nonlinear isogeometric analysis. , 2013, , .		0
41	Some numerical issues on the use of XFEM for ductile fracture. Computational Mechanics, 2012, 50, 611-629.	2.2	18
42	The enhanced assumed strain method for the isogeometric analysis of nearly incompressible deformation of solids. International Journal for Numerical Methods in Engineering, 2012, 92, 56-78.	1.5	30
43	An assessment of isotropic constitutive models for ductile fracture under high and low stress triaxiality. International Journal of Plasticity, 2012, 30-31, 81-115.	4.1	129
44	Continuous-discontinuous formulation for ductile fracture. International Journal of Material Forming, 2011, 4, 271-281.	0.9	22
45	A Ductile Damage Nonlocal Model of Integral-type at Finite Strains: Formulation and Numerical Issues. International Journal of Damage Mechanics, 2011, 20, 515-557.	2.4	53
46	A comparison of shear mechanisms for the prediction of ductile failure under low stress triaxiality. International Journal of Structural Integrity, 2010, 1, 314-331.	1.8	14
47	Prediction of Forming Limits Based on a Coupled Approach Between Anisotropic Damage and Necking Models. , 2010, , .		Ο
48	Continuous-Discontinuous Model for Ductile Fracture. AIP Conference Proceedings, 2010, , .	0.3	1
49	Thermodynamical Framework for Ductile Damage and Plasticity. , 2010, , .		0
50	Classical and Thermodynamically Consistent Non-local Formulations for Ductile Damage: Comparison of Approaches. , 2010, , .		0
51	Improvement of the numerical prediction of ductile failure with an integral nonlocal damage model. International Journal of Material Forming, 2009, 2, 439-442.	0.9	11
52	Numerical integration algorithm of a new model for metal plasticity and fracture including pressure and lode angle dependence. International Journal of Material Forming, 2009, 2, 443-446.	0.9	8
53	Sheet metal formability evaluation using continuous damage mechanics. International Journal of Material Forming, 2009, 2, 463-466.	0.9	8
54	A proposal to deal with contact and friction by blending meshfree and finite element methods in forming processes. International Journal of Material Forming, 2008, 1, 177-188.	0.9	7

Jм César De SÃi

#	Article	IF	CITATIONS
55	Integration Of Heat Transfer Coefficient In Glass Forming Modeling With Special Interface Element. AIP Conference Proceedings, 2007, , .	0.3	1
56	Failure Prediction In Forming Processes. AIP Conference Proceedings, 2007, , .	0.3	0
57	Coupling Finite Element And Meshless Methods To Deal With Contact And Friction In Forging Processes. AIP Conference Proceedings, 2007, , .	0.3	1
58	Modelling of heat transfer at glass/mould interface in press and blow forming processes. Computers and Structures, 2007, 85, 1194-1205.	2.4	12
59	Damage modelling in metal forming problems using an implicit non-local gradient model. Computer Methods in Applied Mechanics and Engineering, 2006, 195, 6646-6660.	3.4	50
60	Finite element prediction of ductile fracture in sheet metal forming processes. Journal of Materials Processing Technology, 2006, 177, 278-281.	3.1	38
61	Enhancedtransverse shear strain shell formulation applied to large elasto-plastic deformation problems. International Journal for Numerical Methods in Engineering, 2005, 62, 1360-1398.	1.5	23
62	A partial factors methodology for structural safety assessment in non-linear analysis. Computers and Concrete, 2005, 2, 31-53.	0.7	2
63	Strong displacement discontinuities and Lagrange multipliers in the analysis of finite displacement fracture problems. Computational Mechanics, 2004, 35, 54-71.	2.2	23
64	Algorithms for the analysis of 3D finite strain contact problems. International Journal for Numerical Methods in Engineering, 2004, 61, 1107-1151.	1.5	14
65	On the use of an enhanced transverse shear strain shell element for problems involving large rotations. Computational Mechanics, 2003, 30, 286-296.	2.2	52
66	Analysis of 3D problems using a new enhanced strain hexahedral element. International Journal for Numerical Methods in Engineering, 2003, 58, 1637-1682.	1.5	86
67	Numerical modelling of ductile plastic damage in bulk metal forming. International Journal of Mechanical Sciences, 2003, 45, 273-294.	3.6	69
68	A gradient model for finite strain elastoplasticity coupled with damage. Finite Elements in Analysis and Design, 2003, 39, 1191-1235.	1.7	37
69	A new volumetric and shear lockingâ€free 3D enhanced strain element. Engineering Computations, 2003, 20, 896-925.	0.7	79
70	Development of shear locking-free shell elements using an enhanced assumed strain formulation. International Journal for Numerical Methods in Engineering, 2002, 53, 1721-1750.	1.5	75
71	Development of a one point quadrature shell element for nonlinear applications with contact and anisotropy. Computer Methods in Applied Mechanics and Engineering, 2002, 191, 5177-5206.	3.4	57
72	An efficient algorithm to estimate optimal preform die shape parameters in forging. Engineering Computations, 2001, 18, 1057-1077.	0.7	16

JM CéSAR DE SÃi

#	Article	IF	CITATIONS
73	Quadrilateral elements for the solution of elastoâ€plastic finite strain problems. International Journal for Numerical Methods in Engineering, 2001, 51, 883-917.	1.5	24
74	A quadrilateral mesh generator for adaptive procedures in bulk forming processes. Engineering Computations, 2000, 17, 950-969.	0.7	2
75	Non-linear analysis of sandwich shells: the effect of core plasticity. Computers and Structures, 2000, 76, 337-346.	2.4	19
76	Analysis of reinforced concrete with external composite strengthening. Composites Part B: Engineering, 2000, 31, 527-534.	5.9	6
77	Simulation model for hot and cold forging by mixed methods including adaptive mesh refinement. Engineering Computations, 1996, 13, 339-360.	0.7	9
78	Finite element analysis of reinforced rubber shells. Engineering Computations, 1987, 4, 319-331.	0.7	5
79	Numerical modelling of glass forming processes. Engineering Computations, 1986, 3, 266-275.	0.7	46
80	Failure Analysis of Metallic Materials in Sheet Metal Forming Using Finite Element Method. Materials Science Forum, 0, 587-588, 736-740.	0.3	0
81	Fracture Prediction Based on Evaluation of Initial Porosity Induced By Direct Energy Deposition. European Journal of Computational Mechanics, 0, , .	0.0	3