
## Jindrich Fanfrlik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2997073/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Druggable Hot Spots in the Schistosomiasis Cathepsin B1 Target Identified by Functional and Binding<br>Mode Analysis of Potent Vinyl Sulfone Inhibitors. ACS Infectious Diseases, 2021, 7, 1077-1088.                                                                                      | 3.8 | 9         |
| 2  | Azanitrile Inhibitors of the SmCB1 Protease Target Are Lethal to <i>Schistosoma mansoni</i> :<br>Structural and Mechanistic Insights into Chemotype Reactivity. ACS Infectious Diseases, 2021, 7,<br>189-201.                                                                              | 3.8 | 9         |
| 3  | Transformation of various multicenter bondings within bicapped-square antiprismatic motifs:<br><i>Z</i> -rearrangement. Dalton Transactions, 2021, 50, 12098-12106.                                                                                                                        | 3.3 | 4         |
| 4  | Structural and Thermodynamic Analysis of the Resistance Development to Pimodivir (VX-787), the<br>Clinical Inhibitor of Cap Binding to PB2 Subunit of Influenza A Polymerase. Molecules, 2021, 26, 1007.                                                                                   | 3.8 | 8         |
| 5  | The Structure-Based Design of SARS-CoV-2 nsp14 Methyltransferase Ligands Yields Nanomolar<br>Inhibitors. ACS Infectious Diseases, 2021, 7, 2214-2220.                                                                                                                                      | 3.8 | 57        |
| 6  | Thiaborane Icosahedral Barrier Increased by the Functionalization of all Terminal Hydrogens in closo-1-SB11H11. Inorganic Chemistry, 2021, 60, 8428-8431.                                                                                                                                  | 4.0 | 1         |
| 7  | SQM/COSMO Scoring Function: Reliable Quantumâ€Mechanical Tool for Sampling and Ranking in Structureâ€Based Drug Design. ChemPlusChem, 2020, 85, 2361-2361.                                                                                                                                 | 2.8 | 4         |
| 8  | Unraveling the anti-influenza effect of flavonoids: Experimental validation of luteolin and its congeners as potent influenza endonuclease inhibitors. European Journal of Medicinal Chemistry, 2020, 208, 112754.                                                                         | 5.5 | 21        |
| 9  | Electrophilic Methylation of Decaborane(14): Selective Synthesis of Tetramethylated and<br>Heptamethylated Decaboranes and Their Conjugated Bases. Inorganic Chemistry, 2020, 59, 10540-10547.                                                                                             | 4.0 | 3         |
| 10 | Biomimetic Macrocyclic Inhibitors of Human Cathepsin D: Structure–Activity Relationship and Binding<br>Mode Analysis. Journal of Medicinal Chemistry, 2020, 63, 1576-1596.                                                                                                                 | 6.4 | 19        |
| 11 | Bromination Mechanism of <i>closo</i> â€1,2â€C <sub>2</sub> B <sub>10</sub> H <sub>12</sub> and the<br>Structure of the Resulting 9â€Brâ€ <i>closo</i> â€1,2â€C <sub>2</sub> B <sub>10</sub> H <sub>11</sub><br>Determined by Gas Electron Diffraction. ChemPlusChem, 2020, 85, 2606-2610. | 2.8 | 6         |
| 12 | Benchmark Data Sets of Boron Cluster Dihydrogen Bonding for the Validation of Approximate<br>Computational Methods. ChemPhysChem, 2020, 21, 2599-2604.                                                                                                                                     | 2.1 | 4         |
| 13 | SQM/COSMO Scoring Function: Reliable Quantumâ€Mechanical Tool for Sampling and Ranking in Structureâ€Based Drug Design. ChemPlusChem, 2020, 85, 2362-2371.                                                                                                                                 | 2.8 | 12        |
| 14 | Faceâ€Fusion of Icosahedral Boron Hydride Increases Affinity to γâ€Cyclodextrin: closo , closo â€[B 21 H 18 ]<br>â°' as an Anion with Very Low Free Energy of Dehydration. ChemPhysChem, 2020, 21, 971-976.                                                                                | 2.1 | 14        |
| 15 | Optimization of norbornylâ€based carbocyclic nucleoside analogs as cyclinâ€dependent kinase 2<br>inhibitors. Journal of Molecular Recognition, 2020, 33, e2842.                                                                                                                            | 2.1 | 2         |
| 16 | The Influence of Halogenated Hypercarbon on Crystal Packing in the Series of<br>1-Ph-2-X-1,2-dicarba-closo-dodecaboranes (X = F, Cl, Br, I). Molecules, 2020, 25, 1200.                                                                                                                    | 3.8 | 3         |
| 17 | Complexation and stability of the fungicide penconazole in the presence of zinc and copper ions. Rapid<br>Communications in Mass Spectrometry, 2020, 34, e8714.                                                                                                                            | 1.5 | 8         |
| 18 | Chalcogen Bonding due to the Exo-Substitution of Icosahedral Dicarbaborane. Molecules, 2019, 24, 2657.                                                                                                                                                                                     | 3.8 | 6         |

| #  | Article                                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Thiaboranes on Both Sides of the Icosahedral Barrier: Retaining and Breaking the Barrier with Carbon<br>Functionalities. ChemPlusChem, 2019, 84, 822-827.                                                                                                                            | 2.8 | 4         |
| 20 | A theoretical analysis of the structure and properties of B <sub>26</sub> H <sub>30</sub> isomers.<br>Consequences to the laser and semiconductor doping capabilities of large borane clusters. Physical<br>Chemistry Chemical Physics, 2019, 21, 12916-12923.                       | 2.8 | 5         |
| 21 | Thiaborane clusters with an exoskeletal B–H group. Chemical Communications, 2019, 55, 3375-3378.                                                                                                                                                                                     | 4.1 | 1         |
| 22 | Synthesis of <i>closo-</i> 1,2-H <sub>2</sub> C <sub>2</sub> B <sub>8</sub> Me <sub>8</sub> and<br>1,2-H <sub>2</sub> C <sub>2</sub> B <sub>8</sub> Me <sub>7</sub> X (X = I and OTf) Dicarbaboranes and<br>Their Rearrangement Reactions. Inorganic Chemistry, 2019, 58, 2865-2871. | 4.0 | 7         |
| 23 | Investigation of Thiaborane <i>closo</i> – <i>nido</i> Conversion Pathways Promoted by<br><i>N</i> -Heterocyclic Carbenes. Inorganic Chemistry, 2019, 58, 2471-2482.                                                                                                                 | 4.0 | 6         |
| 24 | Nature of Binding in Planar Halogen–Benzene Assemblies and Their Possible Visualization in Scanning<br>Probe Microscopy. Journal of Physical Chemistry C, 2019, 123, 8379-8386.                                                                                                      | 3.1 | 6         |
| 25 | Icosahedral Carbaboranes with Peripheral Hydrogen–Chalcogenide Groups: Structures from Gas<br>Electron Diffraction and Chemical Shielding in Solution. Chemistry - A European Journal, 2019, 25,<br>2313-2321.                                                                       | 3.3 | 16        |
| 26 | A systematic examination of classical and multi-center bonding in heteroborane clusters. Physical Chemistry Chemical Physics, 2018, 20, 4666-4675.                                                                                                                                   | 2.8 | 26        |
| 27 | Ranking Power of the SQM/COSMO Scoring Function on Carbonic Anhydraseâ€Il–Inhibitor Complexes.<br>ChemPhysChem, 2018, 19, 873-879.                                                                                                                                                   | 2.1 | 29        |
| 28 | Various types of non-covalent interactions contributing towards crystal packing of halogenated<br>diphospha-dicarbaborane with an open pentagonal belt. New Journal of Chemistry, 2018, 42,<br>10481-10483.                                                                          | 2.8 | 1         |
| 29 | Sâ∢N chalcogen bonded complexes of carbon disulfide with diazines. Theoretical study. Chemical<br>Physics, 2018, 500, 37-44.                                                                                                                                                         | 1.9 | 12        |
| 30 | Dihalogen and Pnictogen Bonding in Crystalline Icosahedral Phosphaboranes. Crystals, 2018, 8, 390.                                                                                                                                                                                   | 2.2 | 16        |
| 31 | Quantitative syntheses of permethylated<br><i>closo</i> -1,10-R <sub>2</sub> C <sub>2</sub> B <sub>8</sub> Me <sub>8</sub> (R = H, Me) carboranes.<br>Egg-shaped hydrocarbons on the Frontier between inorganic and organic chemistry. RSC Advances,<br>2018. 8, 38238-38244.        | 3.6 | 6         |
| 32 | Outerly functionalized and non-functionalized boron clusters intercalated into layered hydroxides with different modes of binding: materials for superacid storage. Dalton Transactions, 2018, 47, 11669-11679.                                                                      | 3.3 | 4         |
| 33 | Methyl camouflage in the ten-vertex <i>closo</i> -dicarbaborane(10) series. Isolation of<br><i>closo</i> -1,6-R <sub>2</sub> C <sub>2</sub> 8 <sub>8</sub> Me <sub>8</sub> (R = H and Me) and their<br>monosubstituted analogues. Dalton Transactions, 2018, 47, 11070-11076.        | 3.3 | 6         |
| 34 | Chalcogen Bonding in Proteinâ^'Ligand Complexes: PDB Survey and Quantum Mechanical Calculations.<br>ChemPhysChem, 2018, 19, 2540-2548.                                                                                                                                               | 2.1 | 50        |
| 35 | SQM/COSMO Scoring Function at the DFTB3-D3H4 Level: Unique Identification of Native<br>Protein–Ligand Poses. Journal of Chemical Information and Modeling, 2017, 57, 127-132.                                                                                                        | 5.4 | 40        |
| 36 | Structural Basis of the Interaction of Cyclinâ€Dependent Kinaseâ€2 with Roscovitine and Its Analogues<br>Having Bioisosteric Central Heterocycles. ChemPhysChem, 2017, 18, 785-795.                                                                                                  | 2.1 | 14        |

Jindrich Fanfrlik

| #  | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Binary twinned-icosahedral [B <sub>21</sub> H <sub>18</sub> ] <sup>â^'</sup> interacts with cyclodextrins as a precedent for its complexation with other organic motifs. Physical Chemistry Chemical Physics, 2017, 19, 11748-11752.                              | 2.8 | 26        |
| 38 | B–Hâ⊄Ï€: a nonclassical hydrogen bond or dispersion contact?. Physical Chemistry Chemical Physics,<br>2017, 19, 18194-18200.                                                                                                                                      | 2.8 | 32        |
| 39 | Explicit treatment of active-site waters enhances quantum mechanical/implicit solvent scoring:<br>Inhibition of CDK2 by new pyrazolo[1,5-a]pyrimidines. European Journal of Medicinal Chemistry, 2017,<br>126, 1118-1128.                                         | 5.5 | 32        |
| 40 | Pnictogen bonding in pyrazine•PnX5 (Pn = P, As, Sb and X = F, Cl, Br) complexes. Journal of Molecular<br>Modeling, 2017, 23, 328.                                                                                                                                 | 1.8 | 18        |
| 41 | A novel stibacarbaborane cluster with adjacent antimony atoms exhibiting unique pnictogen bond formation that dominates its crystal packing. Dalton Transactions, 2017, 46, 13714-13719.                                                                          | 3.3 | 14        |
| 42 | Mimicking of cyproconazole behavior in the presence of Cu and Zn. Rapid Communications in Mass Spectrometry, 2017, 31, 2043-2050.                                                                                                                                 | 1.5 | 8         |
| 43 | Superior Performance of the SQM/COSMO Scoring Functions in Native Pose Recognition of Diverse<br>Protein–Ligand Complexes in Cognate Docking. ACS Omega, 2017, 2, 4022-4029.                                                                                      | 3.5 | 22        |
| 44 | Nuclear Magnetic Shielding of Monoboranes: Calculation and Assessment of <sup>11</sup> B NMR<br>Chemical Shifts in Planar BX <sub>3</sub> and in Tetrahedral [BX <sub>4</sub> ] <sup>â^'</sup> Systems.<br>Journal of Physical Chemistry A, 2017, 121, 9631-9637. | 2.5 | 10        |
| 45 | The Interplay between Various σ- and π-Hole Interactions of Trigonal Boron and Trigonal Pyramidal<br>Arsenic Triiodides. Crystals, 2017, 7, 225.                                                                                                                  | 2.2 | 6         |
| 46 | IDD388 Polyhalogenated Derivatives as Probes for an Improved Structure-Based Selectivity of AKR1B10<br>Inhibitors. ACS Chemical Biology, 2016, 11, 2693-2705.                                                                                                     | 3.4 | 19        |
| 47 | Competition between Halogen, Hydrogen and Dihydrogen Bonding in Brominated Carboranes.<br>ChemPhysChem, 2016, 17, 3373-3376.                                                                                                                                      | 2.1 | 40        |
| 48 | 5-Substituted Pyrimidine and 7-Substituted 7-Deazapurine dNTPs as Substrates for DNA Polymerases in<br>Competitive Primer Extension in the Presence of Natural dNTPs. ACS Chemical Biology, 2016, 11,<br>3165-3171.                                               | 3.4 | 63        |
| 49 | Chalcogens act as inner and outer heteroatoms in borane cages with possible consequences for $I_f$ -hole interactions. CrystEngComm, 2016, 18, 8982-8987.                                                                                                         | 2.6 | 8         |
| 50 | Ab initio and DFT studies of the interaction between carbonyl and thiocarbonyl groups: the role of S···O chalcogen bonds. Theoretical Chemistry Accounts, 2016, 135, 1.                                                                                           | 1.4 | 13        |
| 51 | The π Complex of the Hydronium Ion Frozen on the Pathway of Electrophilic Aromatic Substitution.<br>European Journal of Organic Chemistry, 2016, 2016, 4473-4475.                                                                                                 | 2.4 | 2         |
| 52 | The SQM/COSMO filter: reliable native pose identification based on the quantum-mechanical<br>description of protein–ligand interactions and implicit COSMO solvation. Chemical Communications,<br>2016, 52, 3312-3315.                                            | 4.1 | 55        |
| 53 | The non-planarity of the benzene molecule in the X-ray structure of the chelated bismuth(iii)<br>heteroboroxine complex is not supported by quantum mechanical calculations. Dalton Transactions,<br>2016, 45, 462-465.                                           | 3.3 | 10        |
| 54 | Substrate Specificity, Inhibitor Selectivity and Structure-Function Relationships of Aldo-Keto<br>Reductase 1B15: A Novel Human Retinaldehyde Reductase. PLoS ONE, 2015, 10, e0134506.                                                                            | 2.5 | 17        |

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Noncovalent Interactions of Heteroboranes. Challenges and Advances in Computational Chemistry and Physics, 2015, , 219-239.                                                                                                       | 0.6  | 4         |
| 56 | Chalcogen and Pnicogen Bonds in Complexes of Neutral Icosahedral and Bicapped<br>Square-Antiprismatic Heteroboranes. Journal of Physical Chemistry A, 2015, 119, 1388-1395.                                                       | 2.5  | 39        |
| 57 | The properties of substituted 3D-aromatic neutral carboranes: the potential for σ-hole bonding.<br>Physical Chemistry Chemical Physics, 2015, 17, 20814-20821.                                                                    | 2.8  | 26        |
| 58 | The Effect of Halogen-to-Hydrogen Bond Substitution on Human Aldose Reductase Inhibition. ACS Chemical Biology, 2015, 10, 1637-1642.                                                                                              | 3.4  | 45        |
| 59 | Malonate-based inhibitors of mammalian serine racemase: Kinetic characterization and structure-based computational study. European Journal of Medicinal Chemistry, 2015, 89, 189-197.                                             | 5.5  | 49        |
| 60 | Structural and Functional Studies of Phosphoenolpyruvate Carboxykinase from Mycobacterium tuberculosis. PLoS ONE, 2015, 10, e0120682.                                                                                             | 2.5  | 7         |
| 61 | Carborane-Based Carbonic Anhydrase Inhibitors: Insight into CAII/CAIX Specificity from a<br>High-Resolution Crystal Structure, Modeling, and Quantum Chemical Calculations. BioMed Research<br>International, 2014, 2014, 1-9.    | 1.9  | 18        |
| 62 | The Dominant Role of Chalcogen Bonding in the Crystal Packing of 2D/3D Aromatics. Angewandte Chemie, 2014, 126, 10303-10306.                                                                                                      | 2.0  | 26        |
| 63 | Structural Basis for Inhibition of Mycobacterial and Human Adenosine Kinase by 7-Substituted<br>7-(Het)aryl-7-deazaadenine Ribonucleosides. Journal of Medicinal Chemistry, 2014, 57, 8268-8279.                                  | 6.4  | 26        |
| 64 | The Dominant Role of Chalcogen Bonding in the Crystal Packing of 2D/3D Aromatics. Angewandte<br>Chemie - International Edition, 2014, 53, 10139-10142.                                                                            | 13.8 | 124       |
| 65 | Theoretical insight into the stabilization of triazole fungicides via their interactions with dications.<br>International Journal of Mass Spectrometry, 2014, 359, 38-43.                                                         | 1.5  | 12        |
| 66 | 7â€Arylâ€7â€deazaadenine 2′â€Deoxyribonucleoside Triphosphates (dNTPs): Better Substrates for DNA<br>Polymerases than dATP in Competitive Incorporations. Angewandte Chemie - International Edition,<br>2014, 53, 7552-7555.      | 13.8 | 61        |
| 67 | The Dominant Role of Chalcogen Bonding in the Crystal Packing of 2D/3D Aromatics. Angewandte Chemie - International Edition, 2014, 53, 10139-10142.                                                                               | 13.8 | 1         |
| 68 | Quantum Mechanical Scoring: Structural and Energetic Insights into Cyclin-Dependent Kinase 2<br>Inhibition by Pyrazolo[1,5-a]pyrimidines. Current Computer-Aided Drug Design, 2013, 9, 118-129.                                   | 1.2  | 5         |
| 69 | Quantum Mechanics-Based Scoring Rationalizes the Irreversible Inactivation of Parasitic<br><i>Schistosoma mansoni</i> Cysteine Peptidase by Vinyl Sulfone Inhibitors. Journal of Physical<br>Chemistry B, 2013, 117, 14973-14982. | 2.6  | 43        |
| 70 | QM/MM Calculations Reveal the Different Nature of the Interaction of Two Carborane-Based<br>Sulfamide Inhibitors of Human Carbonic Anhydrase II. Journal of Physical Chemistry B, 2013, 117,<br>16096-16104.                      | 2.6  | 47        |
| 71 | Modulation of Aldose Reductase Inhibition by Halogen Bond Tuning. ACS Chemical Biology, 2013, 8, 2484-2492.                                                                                                                       | 3.4  | 85        |
| 72 | The Semiempirical Quantum Mechanical Scoring Function for In Silico Drug Design. ChemPlusChem, 2013, 78, 921-931.                                                                                                                 | 2.8  | 80        |

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Synthesis of nucleosides and dNTPs bearing oligopyridine ligands linked through an octadiyne tether,<br>their incorporation into DNA and complexation with transition metal cations. Organic and<br>Biomolecular Chemistry, 2013, 11, 78-89.      | 2.8 | 9         |
| 74 | Assessing the Accuracy and Performance of Implicit Solvent Models for Drug Molecules:<br>Conformational Ensemble Approaches. Journal of Physical Chemistry B, 2013, 117, 5950-5962.                                                               | 2.6 | 60        |
| 75 | Halogen bond tunability II: the varying roles of electrostatic and dispersion contributions to attraction in halogen bonds. Journal of Molecular Modeling, 2013, 19, 4651-4659.                                                                   | 1.8 | 190       |
| 76 | Quantum Mechanical Scoring: Structural and Energetic Insights into Cyclin-Dependent Kinase 2<br>Inhibition by Pyrazolo[1,5-a]pyrimidines. Current Computer-Aided Drug Design, 2013, 9, 118-129.                                                   | 1.2 | 52        |
| 77 | Structural Basis for Inhibition of Cathepsin B Drug Target from the Human Blood Fluke, Schistosoma mansoni. Journal of Biological Chemistry, 2011, 286, 35770-35781.                                                                              | 3.4 | 60        |
| 78 | On the reliability of the corrected semiempirical quantum chemical method (PM6-DH2) for assigning the protonation states in HIV-1 protease/inhibitor complexes. Collection of Czechoslovak Chemical Communications, 2011, 76, 457-479.            | 1.0 | 7         |
| 79 | Semiempirical Quantum Mechanical Method PM6-DH2X Describes the Geometry and Energetics of<br>CK2-Inhibitor Complexes Involving Halogen Bonds Well, While the Empirical Potential Fails. Journal of<br>Physical Chemistry B, 2011, 115, 8581-8589. | 2.6 | 80        |
| 80 | Ligand Conformational and Solvation/Desolvation Free Energy in Proteinâ^'Ligand Complex Formation.<br>Journal of Physical Chemistry B, 2011, 115, 4718-4724.                                                                                      | 2.6 | 24        |
| 81 | Transferable scoring function based on semiempirical quantum mechanical PM6-DH2 method: CDK2 with 15 structurally diverse inhibitors. Journal of Computer-Aided Molecular Design, 2011, 25, 223-235.                                              | 2.9 | 48        |
| 82 | Halogen bond tunability I: the effects of aromatic fluorine substitution on the strengths of halogen-bonding interactions involving chlorine, bromine, and iodine. Journal of Molecular Modeling, 2011, 17, 3309-3318.                            | 1.8 | 374       |
| 83 | Inhibition of human purine nucleoside phosphorylase by tenofovir phosphate congeners. Collection of Czechoslovak Chemical Communications, 2010, 75, 1249-1257.                                                                                    | 1.0 | 3         |
| 84 | Interactions of Boranes and Carboranes with Aromatic Systems: CCSD(T) Complete Basis Set<br>Calculations and DFT-SAPT Analysis of Energy Components. Journal of Physical Chemistry A, 2010, 114,<br>11304-11311.                                  | 2.5 | 31        |
| 85 | A Reliable Docking/Scoring Scheme Based on the Semiempirical Quantum Mechanical PM6-DH2 Method<br>Accurately Covering Dispersion and H-Bonding: HIV-1 Protease with 22 Ligands. Journal of Physical<br>Chemistry B, 2010, 114, 12666-12678.       | 2.6 | 116       |
| 86 | Synthesis of Analogues of Acyclic Nucleoside Diphosphates Containing a<br>(Phosphonomethyl)phosphanyl Moiety and Studies of Their Phosphorylation. European Journal of<br>Organic Chemistry, 2009, 2009, 1082-1092.                               | 2.4 | 7         |
| 87 | Semiempirical Quantum Chemical PM6 Method Augmented by Dispersion and H-Bonding Correction<br>Terms Reliably Describes Various Types of Noncovalent Complexes. Journal of Chemical Theory and<br>Computation, 2009, 5, 1749-1760.                 | 5.3 | 312       |
| 88 | Stimuli-Responsive Nanoparticles Based on Interaction of Metallacarborane with Poly(ethylene oxide).<br>Macromolecules, 2009, 42, 4829-4837.                                                                                                      | 4.8 | 40        |
| 89 | Design of HIV Protease Inhibitors Based on Inorganic Polyhedral Metallacarboranes. Journal of<br>Medicinal Chemistry, 2009, 52, 7132-7141.                                                                                                        | 6.4 | 132       |
| 90 | Interpretation of Protein/Ligand Crystal Structure using QM/MM Calculations: Case of HIV-1<br>Protease/Metallacarborane Complex. Journal of Physical Chemistry B, 2008, 112, 15094-15102.                                                         | 2.6 | 52        |

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Inorganic Polyhedral Metallacarborane Inhibitors of HIV Protease: A New Approach to Overcoming<br>Antiviral Resistance. Journal of Medicinal Chemistry, 2008, 51, 4839-4843.                       | 6.4 | 90        |
| 92 | Interaction of heteroboranes with biomolecules : Part 2. The effect of various metal vertices and exo-substitutions. Physical Chemistry Chemical Physics, 2007, 9, 2085-2093.                      | 2.8 | 39        |
| 93 | Interaction of Carboranes with Biomolecules: Formation of Dihydrogen Bonds. ChemPhysChem, 2006, 7, 1100-1105.                                                                                      | 2.1 | 134       |
| 94 | Hydration Gibbs Energies of Nucleic Acid Bases Determined by Gibbs Energy Perturbation, Continuous and Hybrid Approaches. Collection of Czechoslovak Chemical Communications, 2005, 70, 1756-1768. | 1.0 | 3         |