
Mercedes Borge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2996639/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Venetoclax-resistant CLL cells show a highly activated and proliferative phenotype. Cancer Immunology, Immunotherapy, 2022, 71, 979-987.	4.2	7
2	Immunomodulatory effects of different intravenous immunoglobulin preparations in chronic lymphocytic leukemia. Scientific Reports, 2021, 11, 12926.	3.3	3
3	In Vitro Sensitivity to Venetoclax and Microenvironment Protection in Hairy Cell Leukemia. Frontiers in Oncology, 2021, 11, 598319.	2.8	13
4	Decidualization Process Induces Maternal Monocytes to Tolerogenic IL-10-Producing Dendritic Cells (DC-10). Frontiers in Immunology, 2020, 11, 1571.	4.8	14
5	Immunoregulatory effects of Lurbinectedin in chronic lymphocytic leukemia. Cancer Immunology, Immunotherapy, 2020, 69, 813-824.	4.2	6
6	Second generation <scp>BTK</scp> inhibitors impair the antiâ€fungal response of macrophages and neutrophils. American Journal of Hematology, 2020, 95, E174-E178.	4.1	10
7	The effect of ibrutinib on neutrophil and γδT cell functions. Leukemia and Lymphoma, 2020, 61, 2409-2418.	1.3	16
8	Expression and function of cathelicidin hCAP18/LL-37 in chronic lymphocytic leukemia. Haematologica, 2020, 105, e465-469.	3.5	3
9	Chronic lymphocytic leukemia cells increase neutrophils survival and promote their differentiation into CD16 ^{high} CD62L ^{dim} immunosuppressive subset. International Journal of Cancer, 2019, 144, 1128-1134.	5.1	15
10	Effect of the BTK inhibitor ibrutinib on macrophage- and γδT cell-mediated response against Mycobacterium tuberculosis. Blood Cancer Journal, 2018, 8, 100.	6.2	31
11	Autologous T-cell activation fosters ABT-199 resistance in chronic lymphocytic leukemia: rationale for a combined therapy with SYK inhibitors and anti-CD20 monoclonal antibodies. Haematologica, 2018, 103, e458-e461.	3.5	14
12	Sphingosine kinase 1 participates in the activation, proliferation and survival of chronic lymphocytic leukemia cells. Haematologica, 2017, 102, e257-e260.	3.5	9
13	The kinase inhibitors R406 and GS-9973 impair T cell functions and macrophage-mediated anti-tumor activity of rituximab in chronic lymphocytic leukemia patients. Cancer Immunology, Immunotherapy, 2017, 66, 461-473.	4.2	14
14	Somatic Hypermutation Defects in Common Variable Immune Deficiency. Current Allergy and Asthma Reports, 2017, 17, 76.	5.3	1
15	Revisiting the role of interleukin-8 in chronic lymphocytic leukemia. Scientific Reports, 2017, 7, 15714.	3.3	13
16	Neutrophils from chronic lymphocytic leukemia patients exhibit an increased capacity to release extracellular traps (NETs). Cancer Immunology, Immunotherapy, 2017, 66, 77-89.	4.2	48
17	Soluble RANKL production by leukemic cells in a case of chronic lymphocytic leukemia with bone destruction. Leukemia and Lymphoma, 2016, 57, 2468-2471.	1.3	6
18	Surface localization of high-mobility group nucleosome-binding protein 2 on leukemic B cells from patients with chronic lymphocytic leukemia is related to secondary autoimmune hemolytic anemia. Leukemia and Lymphoma, 2015, 56, 1115-1122.	1.3	5

Mercedes Borge

#	Article	IF	CITATIONS
19	Ibrutinib impairs the phagocytosis of rituximab-coated leukemic cells from chronic lymphocytic leukemia patients by human macrophages. Haematologica, 2015, 100, e140-e142.	3.5	61
20	Sphingosine Kinases (SK): Key Molecules Associated with the Activation, Proliferation and Ibrutinib-Induced Cell Death of Chronic Lympocytic Leukemia Cells. Blood, 2015, 126, 1714-1714.	1.4	0
21	The Expression of Sphingosine-1 Phosphate Receptor-1 in Chronic Lymphocytic Leukemia Cells Is Impaired by Tumor Microenvironmental Signals and Enhanced by Piceatannol and R406. Journal of Immunology, 2014, 193, 3165-3174.	0.8	21
22	CXCL12 is a costimulator for CD4+ T cell activation and proliferation in chronic lymphocytic leukemia patients. Cancer Immunology, Immunotherapy, 2013, 62, 113-124.	4.2	17
23	Nurse-like cells control the activity of chronic lymphocytic leukemia B cells via galectin-1. Leukemia, 2013, 27, 1413-1416.	7.2	47
24	Methylation status regulates lipoprotein lipase expression in chronic lymphocytic leukemia. Leukemia and Lymphoma, 2013, 54, 1844-1848.	1.3	16
25	Lipoprotein lipase expression in unmutated CLL patients is the consequence of a demethylation process induced by the microenvironment. Leukemia, 2013, 27, 721-725.	7.2	15
26	The cytotoxic activity of Aplidin in chronic lymphocytic leukemia (CLL) is mediated by a direct effect on leukemic cells and an indirect effect on monocyte-derived cells. Investigational New Drugs, 2012, 30, 1830-1840.	2.6	26
27	2.8 CXCL12 Is a Costimulator for CD4+ T-Cell Activation and Proliferation in Patients with Chronic Lymphocytic Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2011, 11, S164.	0.4	0
28	CCR4 expression in a case of cutaneous Richter's transformation of chronic lymphocytic leukemia (CLL) to diffuse large B-cell lymphoma (DLBCL) and in CLL patients with no skin manifestations. European Journal of Haematology, 2011, 87, 80-86.	2.2	6
29	CXCL12-induced chemotaxis is impaired in T cells from patients with ZAP-70-negative chronic lymphocytic leukemia. Haematologica, 2010, 95, 768-775.	3.5	13
30	Human Monocytes and Monocyte-Like Cells Are Highly Sensitive to Plitidepsin-Induced Cell Death In In Vitro Assays. Blood, 2010, 116, 4942-4942.	1.4	0
31	Chronic Lymphocytic Leukemia Cells Bind and Present the Erythrocyte Protein Band 3: Possible Role as Initiators of Autoimmune Hemolytic Anemia. Journal of Immunology, 2008, 181, 3674-3683.	0.8	30
32	SHIP-1 protein level and phosphorylation status differs between CLL cells segregated by ZAP-70 expression. British Journal of Haematology, 2007, 140, 071116225528001-???.	2.5	15