
Wataru Hakamata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2996026/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Facile and Stabile Linkages through Tyrosine: Bioconjugation Strategies with the Tyrosine-Click Reaction. Bioconjugate Chemistry, 2013, 24, 520-532.	3.6	144
2	Formylbenzene Diazonium Hexafluorophosphate Reagent for Tyrosine-Selective Modification of Proteins and the Introduction of a Bioorthogonal Aldehyde. Bioconjugate Chemistry, 2012, 23, 2321-2328.	3.6	90
3	Design and Screening Strategies for α-Glucosidase Inhibitors Based on Enzymological Information. Current Topics in Medicinal Chemistry, 2009, 9, 3-12.	2.1	75
4	Planar Catechin Analogues with Alkyl Side Chains: A Potent Antioxidant and an α-Glucosidase Inhibitor. Journal of the American Chemical Society, 2006, 128, 6524-6525.	13.7	73
5	Structural Basis for Recognition of High Mannose Type Glycoproteins by Mammalian Transport Lectin VIP36. Journal of Biological Chemistry, 2007, 282, 28246-28255.	3.4	53
6	Convenient Preparation of Cyclic Acetals, Using Diols, TMS-Source, and a Catalytic Amount of TMSOTf. Journal of Organic Chemistry, 2003, 68, 3413-3415.	3.2	39
7	Hydrolytic activity of α-galactosidases against deoxy derivatives of p-nitrophenyl α-d-galactopyranoside. Carbohydrate Research, 2000, 324, 107-115.	2.3	38
8	Structure of the ligand-binding domain of rat VDR in complex with the nonsecosteroidal vitamin D ₃ analogue YR301. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 970-973.	0.7	36
9	Multicolor Imaging of Endoplasmic Reticulum-Located Esterase As a Prodrug Activation Enzyme. ACS Medicinal Chemistry Letters, 2014, 5, 321-325.	2.8	35
10	Design and synthesis of an ER-specific fluorescent probe based on carboxylesterase activity with quinone methide cleavage process. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 3206-3209.	2.2	34
11	Glycon specificity profiling of α-glucosidases using monodeoxy and mono-O-methyl derivatives of p-nitrophenyl α-d-glucopyranoside. Carbohydrate Research, 2002, 337, 629-634.	2.3	33
12	A Planar Catechin Analogue Having a More Negative Oxidation Potential than (+)-Catechin as an Electron Transfer Antioxidant against a Peroxyl Radical. Chemical Research in Toxicology, 2004, 17, 26-31.	3.3	32
13	A Planar Catechin Analogue as a Promising Antioxidant with Reduced Prooxidant Activity. Chemical Research in Toxicology, 2003, 16, 81-86.	3.3	25
14	(2S,2′R)-Analogue of LG190178 is a major active isomer. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 120-123.	2.2	25
15	Hydrolytic Activity of <i>α</i> -Mannosidase against Deoxy Derivatives of <i>p</i> -Nitrophenyl <i>α</i> - <scp>d</scp> -Mannopyranoside. Bioscience, Biotechnology and Biochemistry, 1996, 60, 2038-2042.	1.3	20
16	Synthesis of Monomethyl Derivatives of <i>P</i> -Nitrophenyl α-D-Gluco, Galacto, and Mannopyranosides and their Hydrolytic Properties Against α-Glycosidases. Journal of Carbohydrate Chemistry, 2000, 19, 359-377.	1.1	20
17	Structure-based analysis of domain function of chitin oligosaccharide deacetylase fromVibrio parahaemolyticus. FEBS Letters, 2015, 589, 145-151.	2.8	19
18	Synthesis of p-Nitrophenyl 3- and 6-deoxyALPHAD-glucopyranosides and Their Specificity to Rice ALPHAGlucosidase., Journal of Applied Glycoscience (1999), 1999, 46, 459-463.	0.7	16

Wataru Hakamata

#	Article	IF	CITATIONS
19	Chitin oligosaccharide deacetylase from <i>Shewanella baltica</i> ATCC BAA-1091. Bioscience, Biotechnology and Biochemistry, 2017, 81, 547-550.	1.3	15
20	Recognition Properties of Processing αâ€Clucosidase I and αâ€Clucosidase II. Journal of Carbohydrate Chemistry, 2004, 23, 27-39.	1.1	14
21	Chitin Heterodisaccharide, Released from Chitin by Chitinase and Chitin Oligosaccharide Deacetylase, Enhances the Chitin-Metabolizing Ability of Vibrio parahaemolyticus. Journal of Bacteriology, 2019, 201, .	2.2	13
22	Continuous Production of ^ ^beta;-D-Fructofuranosyl-(2^ ^rarr;1)-2-acetamido-2-deoxy-^ ^alpha;-D-glucopyranoside (N-Acetylsucrosamine) Using a Column Reactor Packed with ^ ^beta;-Fructofuranosidase-containing Mycelia of Aspergillus oryzae Immobilized on a Porous Carrier. Journal of Applied Glycoscience (1999), 2012, 59, 153-160.	0.7	13
23	Aglycon specificity profiling of α-glucosidases using synthetic probes. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 1489-1492.	2.2	11
24	Identification of a novel glycan processing enzyme with exo-acting β-allosidase activity in the Golgi apparatus using a new platform for the synthesis of fluorescent substrates. Bioorganic and Medicinal Chemistry, 2015, 23, 73-79.	3.0	11
25	Discovery of human Golgi β-galactosidase with no identified glycosidase using a QMC substrate design platform for exo-glycosidase. Bioorganic and Medicinal Chemistry, 2016, 24, 1369-1375.	3.0	11
26	Enzymatic synthesis of novel oligosaccharides from <i>N</i> -acetylsucrosamine and melibiose using <i>Aspergillus niger</i> α-galactosidase, and properties of the products. Bioscience, Biotechnology and Biochemistry, 2016, 80, 1836-1842.	1.3	10
27	Development of Fluorogenic Substrates of $\hat{I}\pm$ -l-Fucosidase Useful for Inhibitor Screening and Gene-expression Profiling. ACS Medicinal Chemistry Letters, 2019, 10, 1309-1313.	2.8	10
28	A novel Golgi mannosidase inhibitor: Molecular design, synthesis, enzyme inhibition, and inhibition of spheroid formation. Bioorganic and Medicinal Chemistry, 2020, 28, 115492.	3.0	10
29	A Simple Synthesis of Alliin and allo-Alliin: X-ray Diffraction Analysis and Determination of Their Absolute Configurations. Journal of Agricultural and Food Chemistry, 2015, 63, 10778-10784.	5.2	9
30	Identification of Small-Molecule Inhibitors of Human Golgi Mannosidase <i>via</i> a Drug Repositioning Screen. Chemical and Pharmaceutical Bulletin, 2018, 66, 678-681.	1.3	9
31	Virtual ligand screening of α-glucosidase: Identification of a novel potent noncarbohydrate mimetic inhibitor. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 62-64.	2.2	8
32	Chitin Oligosaccharide Deacetylase from <i>Shewanella woodyi</i> ATCC51908. Journal of Applied Glycoscience (1999), 2015, 62, 153-157.	0.7	8
33	Synthesis of Chitin Oligosaccharides Using Dried Stenotrophomonas maltophilia Cells Containing a Transglycosylation Reaction-Catalyzing β-N-Acetylhexosaminidase as a Whole-Cell Catalyst. Applied Biochemistry and Biotechnology, 2018, 184, 673-684.	2.9	8
34	Glycosidase-catalyzed Deoxy Oligosaccharide Synthesis. Practical Synthesis of Monodeoxy Analogs of Ethyl β-Thioisomaltoside UsingAspergillus nigerα-Glucosidase. Bioscience, Biotechnology and Biochemistry, 2003, 67, 1024-1029.	1.3	7
35	In vivo programming of endogenous antibodies via oral administration of adaptor ligands. Bioorganic and Medicinal Chemistry, 2017, 25, 5952-5961.	3.0	6
36	Screening, Synthesis, and Evaluation of Novel Isoflavone Derivatives as Inhibitors of Human Golgi β-Galactosidase. Chemical and Pharmaceutical Bulletin, 2020, 68, 753-761.	1.3	6

#	Article	IF	CITATIONS
37	Utilization of sucrose and analog disaccharides by human intestinal bifidobacteria and lactobacilli: Search of the bifidobacteria enzymes involved in the degradation of these disaccharides. Microbiological Research, 2020, 240, 126558.	5.3	5
38	Solid-Phase Nucleophilic Fluorination. Synthetic Communications, 2012, 42, 1724-1730.	2.1	4
39	Enzymatic synthesis and the structure elucidation of novel trisaccharides comprised of D-galactose, N-acetyl-D-glucosamine, and D-fructose. Journal of Carbohydrate Chemistry, 2016, 35, 378-386.	1.1	4
40	Chemoenzymatic synthesis and properties of sucuronamide. Journal of Carbohydrate Chemistry, 2016, 35, 435-444.	1.1	4
41	Chemoenzymatic synthesis of sucuronic acid using d -glucurono-6,3-lactone and sucrose as raw materials, and properties of the product. Enzyme and Microbial Technology, 2018, 110, 53-60.	3.2	3
42	Antiviral Activity and Mechanism of Action of Endoplasmic Reticulum Glucosidase Inhibitors: A Mini Review. Trends in Glycoscience and Glycotechnology, 2018, 30, E139-E145.	0.1	3
43	[Review: Prize-awarded article] Study of Substrate Specificity for Glycosidase Inhibitor Design. Bulletin of Applied Glycoscience, 2011, 1, 51-57.	0.0	3
44	Development of Specific Fluorogenic Substrates for Human β- <i>N</i> -Acetyl-D-hexosaminidase A for Cell-Based Assays. Chemical and Pharmaceutical Bulletin, 2020, 68, 526-533.	1.3	3
45	Design and synthesis of cell-permeable fluorescent nitrilotriacetic acid derivatives. Bioorganic and Medicinal Chemistry, 2018, 26, 5494-5498.	3.0	2
46	Antioxidative Potency of Dolphin Serum Albumin Is Stronger Than That of Human Serum Albumin Irrespective of Substitution of 34Cysteine With Serine. Frontiers in Physiology, 2020, 11, 598451.	2.8	2
47	[Mini Review: 37th The Society of Young Carbohydrate Scientists] Detection of N-linked Oligosaccharide Processing Enzyme Activity at Cellular Level. Bulletin of Applied Glycoscience, 2013, 3, 195-196.	0.0	1
48	Design and Synthesis of .ALPHAGlucosidase Inhibitor Having DNA Cleaving Activity. Journal of Applied Glycoscience (1999), 2006, 53, 255-260.	0.7	1
49	Development of Fluorescent Substrate for Glycan Processing Glycosidase, and Screening of the Novel Glycosidase Inhibitor. Trends in Glycoscience and Glycotechnology, 2020, 32, E201-E204.	0.1	1
50	Convenient Preparation of Cyclic Acetals, Using Diols, TMS-Source, and a Catalytic Amount of TMSOTf ChemInform, 2003, 34, no.	0.0	0
51	1,3-Butanediol Dibenzoate. MolBank, 2016, 2016, M905.	0.5	0
52	Antiviral Activity and Mechanism of Action of Endoplasmic Reticulum Glucosidase Inhibitors: A Mini Review. Trends in Glycoscience and Glycotechnology, 2018, 30, J115-J121.	0.1	0
53	Synthesis of All Stereoisomers of 1-(4-Methoxyphenyl)-2,3,4,9-tetrahydro-N-methyl-1H-pyrido[3,4-b]indole-3-carboxamide. MolBank, 2018, 2018, M973.	0.5	0
54	[Regular Paper] Separation of Cell-cell Communication Inhibitory Activity and Cytotoxicity of the Golgi Mannosidase Inhibitors by Structural Modifications. Bulletin of Applied Glycoscience, 2020, 10, 184-193.	0.0	0

#	Article	IF	CITATIONS
55	Development of Fluorescent Substrate for Glycan Processing Glycosidase, and Screening of the Novel Glycosidase Inhibitor. Trends in Glycoscience and Glycotechnology, 2020, 32, J177-J180.	0.1	Ο
56	[Review] Development of Fluorogenic Substrates and Inhibitors of Human Intracellular Glycosidases: Focusing on the Application of Endoplasmic Reticulum Glucosidase Inhibitors to Antiviral Agents. Bulletin of Applied Glycoscience, 2021, 11, 72-78.	0.0	0
57	[Review] Development of Fluorogenic Substrates Based on Elaborate Molecular Design, and Screening of Novel Glycosidases Using Its Substrates. Bulletin of Applied Glycoscience, 2019, 9, 189-194.	0.0	ο