
Maziar Divangahi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2995847/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lack of evidence for intergenerational inheritance of immune resistance to infections. Nature Immunology, 2022, 23, 203-207.	7.0	17
2	Transplacental and Breast Milk Transfer of IgG1 Are Both Required for Prolonged Protection of Offspring Against Influenza A Infection. Frontiers in Immunology, 2022, 13, 823207.	2.2	2
3	TLR4 is a regulator of trained immunity in a murine model of Duchenne muscular dystrophy. Nature Communications, 2022, 13, 879.	5.8	22
4	Chapter 2: Transmission and pathogenesis of tuberculosis. Canadian Journal of Respiratory, Critical Care, and Sleep Medicine, 2022, 6, 22-32.	0.2	2
5	BCG vaccination provides protection against IAV but not SARS-CoV-2. Cell Reports, 2022, 38, 110502.	2.9	51
6	Training can't always lead to Olympic macrophages. Journal of Clinical Investigation, 2022, 132, .	3.9	1
7	Fatty acid oxidation enzyme Δ3, Δ2-enoyl-CoA isomerase 1 (ECI1) drives aggressive tumor phenotype and predicts poor clinical outcome in prostate cancer patients. Oncogene, 2022, 41, 2798-2810.	2.6	7
8	Brain motor and fear circuits regulate leukocytes during acute stress. Nature, 2022, 607, 578-584.	13.7	69
9	Mitochondrial cyclophilin D promotes disease tolerance by licensing NK cell development and IL-22 production against influenza virus. Cell Reports, 2022, 39, 110974.	2.9	5
10	Targeting immunometabolism in host defence against <i>Mycobacterium tuberculosis</i> . Immunology, 2021, 162, 145-159.	2.0	34
11	Lessons From Bacille Calmette-Guérin for SARS-CoV-2 Vaccine Candidates. Journal of Infectious Diseases, 2021, 223, 189-191.	1.9	3
12	Trained immunity, tolerance, priming and differentiation: distinct immunological processes. Nature Immunology, 2021, 22, 2-6.	7.0	274
13	Training the metaorganism: the microbial counterpart. Cell, 2021, 184, 574-576.	13.5	1
14	Early innate and adaptive immune perturbations determine long-term severity of chronic virus and Mycobacterium tuberculosis coinfection. Immunity, 2021, 54, 526-541.e7.	6.6	25
15	Helminth-mediated disease tolerance in TB: A role for microbiota?. PLoS Pathogens, 2021, 17, e1009690.	2.1	3
16	Lung Epithelial Signaling Mediates Early Vaccine-Induced CD4 ⁺ T Cell Activation and <i>Mycobacterium tuberculosis</i> Control. MBio, 2021, 12, e0146821.	1.8	11
17	100 years of antibody solitude in TB. Nature Immunology, 2021, 22, 1470-1471.	7.0	2
18	NK cell recruitment limits tissue damage during an enteric helminth infection. Mucosal Immunology, 2020, 13, 357-370.	2.7	20

#	Article	IF	CITATIONS
19	Can BCG be useful to mitigate the COVID-19 pandemic? A Canadian perspective. Canadian Journal of Public Health, 2020, 111, 939-944.	1.1	3
20	Galectin-3 enhances neutrophil motility and extravasation into the airways during Aspergillus fumigatusÂinfection. PLoS Pathogens, 2020, 16, e1008741.	2.1	33
21	M.Âtuberculosis Reprograms Hematopoietic Stem Cells to Limit Myelopoiesis and Impair Trained Immunity. Cell, 2020, 183, 752-770.e22.	13.5	148
22	β-Glucan Induces Protective Trained Immunity against Mycobacterium tuberculosis Infection: A Key Role for IL-1. Cell Reports, 2020, 31, 107634.	2.9	147
23	Defining trained immunity and its role in health and disease. Nature Reviews Immunology, 2020, 20, 375-388.	10.6	1,345
24	Designing the Next Generation of Vaccines: Relevance for Future Pandemics. MBio, 2020, 11, .	1.8	17
25	Cyclophilin D Regulates Antiviral CD8+ T Cell Survival in a Cell-Extrinsic Manner. ImmunoHorizons, 2020, 4, 217-230.	0.8	5
26	The heme-regulated inhibitor is a cytosolic sensor of protein misfolding that controls innate immune signaling. Science, 2019, 365, .	6.0	81
27	Tolerogenic signaling of alveolar macrophages induces lung adaptation to oxidative injury. Journal of Allergy and Clinical Immunology, 2019, 144, 945-961.e9.	1.5	11
28	Necroptotic cell binding of β 2 â€glycoprotein I provides a potential autoantigenic stimulus in systemic lupus erythematosus. Immunology and Cell Biology, 2019, 97, 799-814.	1.0	6
29	Leukotriene B4–type I interferon axis regulates macrophage-mediated disease tolerance to influenza infection. Nature Microbiology, 2019, 4, 1389-1400.	5.9	31
30	Intestinal dysbiosis compromises alveolar macrophage immunity to Mycobacterium tuberculosis. Mucosal Immunology, 2019, 12, 772-783.	2.7	65
31	Regulation of protein kinase Cδ Nuclear Import and Apoptosis by Mechanistic Target of Rapamycin Complex-1. Scientific Reports, 2019, 9, 17620.	1.6	2
32	Editorial: Evolving Mechanisms of Disease Tolerance. Frontiers in Immunology, 2019, 10, 2974.	2.2	2
33	Targeting innate immunity for tuberculosis vaccination. Journal of Clinical Investigation, 2019, 129, 3482-3491.	3.9	95
34	Dissecting host cell death programs in the pathogenesis of influenza. Microbes and Infection, 2018, 20, 560-569.	1.0	22
35	Mycobacterium tuberculosis and HIV Coinfection Brings Fire and Fury to Macrophages. Journal of Infectious Diseases, 2018, 217, 1851-1853.	1.9	4
36	BCG Educates Hematopoietic Stem Cells to Generate Protective Innate Immunity against Tuberculosis. Cell, 2018, 172, 176-190.e19.	13.5	802

3

#	Article	IF	CITATIONS
37	Aged polymorphonuclear leukocytes cause fibrotic interstitial lung disease in the absence of regulation by B cells. Nature Immunology, 2018, 19, 192-201.	7.0	54
38	Cracking the Vaccine Code in Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 427-432.	2.5	14
39	Beyond Killing Mycobacterium tuberculosis: Disease Tolerance. Frontiers in Immunology, 2018, 9, 2976.	2.2	33
40	Loss of human ICOSL results in combined immunodeficiency. Journal of Experimental Medicine, 2018, 215, 3151-3164.	4.2	40
41	Are tolerance and training required to end TB?. Nature Reviews Immunology, 2018, 18, 661-663.	10.6	8
42	Mitochondrial cyclophilin D regulates T cell metabolic responses and disease tolerance to tuberculosis. Science Immunology, 2018, 3, .	5.6	57
43	Adaptation to oxidative stress induced-lung injury: friend or foe of influenza infection?. , 2018, , .		1
44	Intestinal helminth infection impacts the systemic distribution and function of the naive lymphocyte pool. Mucosal Immunology, 2017, 10, 1160-1168.	2.7	23
45	Unravelling the networks dictating host resistance versus tolerance during pulmonary infections. Cell and Tissue Research, 2017, 367, 525-536.	1.5	22
46	Bcl-xL mediates RIPK3-dependent necrosis in M. tuberculosis-infected macrophages. Mucosal Immunology, 2017, 10, 1553-1568.	2.7	62
47	Semaphorin 4C Protects against Allergic Inflammation: Requirement of Regulatory CD138+ Plasma Cells. Journal of Immunology, 2017, 198, 71-81.	0.4	15
48	RIPK3 interacts with MAVS to regulate type I IFN-mediated immunity to Influenza A virus infection. PLoS Pathogens, 2017, 13, e1006326.	2.1	60
49	Novel protective role of alveolar macrophages in adaptation to lung injury. , 2017, , .		0
50	Tuberculosis. Nature Reviews Disease Primers, 2016, 2, 16076.	18.1	830
51	Divergent impact of Toll-like receptor 2 deficiency on repair mechanisms in healthy muscle versus Duchenne muscular dystrophy. Journal of Pathology, 2016, 239, 10-22.	2.1	33
52	The Energy Sensor AMPK Regulates T Cell Metabolic Adaptation and Effector Responses InÂVivo. Immunity, 2015, 42, 41-54.	6.6	505
53	Toll-like receptor 4 ablation in mdx mice reveals innate immunity as a therapeutic target in Duchenne muscular dystrophy. Human Molecular Genetics, 2015, 24, 2147-2162.	1.4	65
54	Evolution of the Immune Response to Chronic Airway Colonization with Aspergillus fumigatus Hyphae. Infection and Immunity, 2015, 83, 3590-3600.	1.0	31

#	Article	IF	CITATIONS
55	Alveolar macrophages and type I IFN in airway homeostasis and immunity. Trends in Immunology, 2015, 36, 307-314.	2.9	87
56	Freund's adjuvant, NOD2 and mycobacteria. Current Opinion in Microbiology, 2015, 23, 126-132.	2.3	36
57	Annexin1 regulates DC efferocytosis and cross-presentation during Mycobacterium tuberculosis infection. Journal of Clinical Investigation, 2015, 125, 752-768.	3.9	65
58	Efferocytosis: Burying cell corpses to regulate tolerance and immunity. Oncotarget, 2015, 6, 14721-14722.	0.8	2
59	Targeting eicosanoid pathways in the development of novel anti-influenza drugs. Expert Review of Anti-Infective Therapy, 2014, 12, 1337-1343.	2.0	8
60	Targeted Prostaglandin E2 Inhibition Enhances Antiviral Immunity through Induction of Type I Interferon and Apoptosis in Macrophages. Immunity, 2014, 40, 554-568.	6.6	171
61	N-Glycolylated Peptidoglycan Contributes to the Immunogenicity but Not Pathogenicity of Mycobacterium tuberculosis. Journal of Infectious Diseases, 2014, 209, 1045-1054.	1.9	46
62	Inflammatory monocytes promote progression of Duchenne muscular dystrophy and can be therapeutically targeted via <scp>CCR</scp> 2. EMBO Molecular Medicine, 2014, 6, 1476-1492.	3.3	106
63	NLRX1 prevents mitochondrial induced apoptosis and enhances macrophage antiviral immunity by interacting with influenza virus PB1-F2 protein. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2110-9.	3.3	95
64	Dying to Live: How the Death Modality of the Infected Macrophage Affects Immunity to Tuberculosis. Advances in Experimental Medicine and Biology, 2013, 783, 103-120.	0.8	113
65	Vitamin D Induces Interleukin-1β Expression: Paracrine Macrophage Epithelial Signaling Controls M. tuberculosis Infection. PLoS Pathogens, 2013, 9, e1003407.	2.1	198
66	Prostaglandin E2 Negatively Regulates Immunity To Pulmonary Influenza A Virus Infection. , 2012, , .		0
67	Vitamin D Enhances Human Innate Immune Responses Against M. Tuberculosis By Regulating AIM2-Dependent IL-1 \hat{A}^2 Production. , 2012, , .		Ο
68	Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis. Mucosal Immunology, 2011, 4, 279-287.	2.7	361
69	Negative Regulation of Lung Inflammation and Immunopathology by TNF-α during Acute Influenza Infection. American Journal of Pathology, 2011, 179, 2963-2976.	1.9	101
70	CD8+ T-cell expansion and maintenance after recombinant adenovirus immunization rely upon cooperation between hematopoietic and nonhematopoietic antigen-presenting cells. Blood, 2011, 117, 1146-1155.	0.6	42
71	Lipids, apoptosis, and cross-presentation: links in the chain of host defense against Mycobacterium tuberculosis. Microbes and Infection, 2011, 13, 749-756.	1.0	62
72	Increased upper airway cytokines and oxidative stress in severe obstructive sleep apnoea. European Respiratory Journal, 2011, 38, 89-97.	3.1	70

#	Article	IF	CITATIONS
73	A novel antiâ€inflammatory role for secretory phospholipase A ₂ in immune complexâ€mediated arthritis. EMBO Molecular Medicine, 2010, 2, 172-187.	3.3	146
74	Eicosanoid pathways regulate adaptive immunity to Mycobacterium tuberculosis. Nature Immunology, 2010, 11, 751-758.	7.0	232
75	Evasion of innate immunity by Mycobacterium tuberculosis: is death an exit strategy?. Nature Reviews Microbiology, 2010, 8, 668-674.	13.6	380
76	Inspiratory Resistive Breathing Induces Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 1129-1136.	2.5	59
77	Inhibition of monocyte chemoattractant protein-1 prevents diaphragmatic inflammation and maintains contractile function during endotoxemia. Critical Care, 2010, 14, R187.	2.5	21
78	What's in a name? The (mis)labelling of Crohn's as an autoimmune disease. Lancet, The, 2010, 376, 202-203.	6.3	28
79	Lack of CFTR in Skeletal Muscle Predisposes to Muscle Wasting and Diaphragm Muscle Pump Failure in Cystic Fibrosis Mice. PLoS Genetics, 2009, 5, e1000586.	1.5	99
80	Increased NOD2-mediated recognition of <i>N</i> -glycolyl muramyl dipeptide. Journal of Experimental Medicine, 2009, 206, 1709-1716.	4.2	203
81	Chemokine Receptor and Ligand Upregulation in the Diaphragm during Endotoxemia and Pseudomonas Lung Infection. Mediators of Inflammation, 2009, 2009, 1-11.	1.4	9
82	Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair. Nature Immunology, 2009, 10, 899-906.	7.0	303
83	Lipid mediators in innate immunity against tuberculosis: opposing roles of PGE2 and LXA4 in the induction of macrophage death. Journal of Experimental Medicine, 2008, 205, 2791-2801.	4.2	325
84	NOD2-Deficient Mice Have Impaired Resistance to <i>Mycobacterium tuberculosis</i> Infection through Defective Innate and Adaptive Immunity. Journal of Immunology, 2008, 181, 7157-7165.	0.4	183
85	Airway Delivery of Soluble Mycobacterial Antigens Restores Protective Mucosal Immunity by Single Intramuscular Plasmid DNA Tuberculosis Vaccination: Role of Proinflammatory Signals in the Lung. Journal of Immunology, 2008, 181, 5618-5626.	0.4	32
86	Impact of IL-10 on Diaphragmatic Cytokine Expression and Contractility duringPseudomonasInfection. American Journal of Respiratory Cell and Molecular Biology, 2007, 36, 504-512.	1.4	29
87	Critical Negative Regulation of Type 1 T Cell Immunity and Immunopathology by Signaling Adaptor DAP12 during Intracellular Infection. Journal of Immunology, 2007, 179, 4015-4026.	0.4	35
88	Intramuscular immunization with a monogenic plasmid DNA tuberculosis vaccine: Enhanced immunogenicity by electroporation and co-expression of GM-CSF transgene. Vaccine, 2007, 25, 1342-1352.	1.7	69
89	Toll-Like Receptors Differentially Regulate CC and CXC Chemokines in Skeletal Muscle via NF-κB and Calcineurin. Infection and Immunity, 2006, 74, 6829-6838.	1.0	87
90	Modifications of proteins by 4-hydroxy-2-nonenal in the ventilatory muscles of rats. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 290, L996-L1003.	1.3	58

#	Article	IF	CITATIONS
91	Endotoxin Triggers Nuclear Factor-κB–dependent Up-regulation of Multiple Proinflammatory Genes in the Diaphragm. American Journal of Respiratory and Critical Care Medicine, 2006, 174, 646-653.	2.5	62
92	Expression and Regulation of CC Class Chemokines in the Dystrophic (mdx) Diaphragm. American Journal of Respiratory Cell and Molecular Biology, 2005, 33, 178-185.	1.4	38
93	Therapeutic gene transfer to dystrophic diaphragm by an adenoviral vector deleted of all viral genes. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 287, L569-L576.	1.3	24
94	Preferential Diaphragmatic Weakness during SustainedPseudomonas aeruginosaLung Infection. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 679-686.	2.5	59
95	Differential Cytokine Gene Expression in the Diaphragm in Response to Strenuous Resistive Breathing. American Journal of Respiratory and Critical Care Medicine, 2004, 170, 154-161.	2.5	78
96	Reduced tissue macrophage population in the lung by anticancer agent cyclophosphamide: restoration by local granulocyte macrophage–colony-stimulating factor gene transfer. Blood, 2002, 99, 1246-1252.	0.6	49
97	IL-12-Independent Th1 <i>-</i> Type Immune Responses to Respiratory Viral Infection: Requirement of IL-18 for IFN-Î ³ Release in the Lung But Not for the Differentiation of Viral-Reactive Th1 <i>-</i> Type Lymphocytes. Journal of Immunology, 2000, 164, 2575-2584.	0.4	62
98	Eicosanoid pathways regulate adaptive immunity to Mycobacterium tuberculosis. , 0, .		1