Valerie Horsley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2995834/publications.pdf Version: 2024-02-01

VALEDIE HODSLEV

#	Article	IF	CITATIONS
1	Skin Fibrosis and Recovery Is Dependent on Wnt Activation via DPP4. Journal of Investigative Dermatology, 2022, 142, 1597-1606.e9.	0.3	10
2	Single cell transcriptomic landscape of diabetic foot ulcers. Nature Communications, 2022, 13, 181.	5.8	111
3	Cut out that YAPping: Mechanisms to reduce scar formation. Cell Stem Cell, 2022, 29, 179-181.	5.2	2
4	The LINC complex transmits integrin-dependent tension to the nuclear lamina and represses epidermal differentiation. ELife, 2021, 10, .	2.8	45
5	Research Techniques Made Simple: Scientific Communication using Twitter. Journal of Investigative Dermatology, 2021, 141, 1615-1621.e1.	0.3	6
6	Fibroblasts: Origins, definitions, and functions in health and disease. Cell, 2021, 184, 3852-3872.	13.5	340
7	Statement on Racial Equality. Journal of Investigative Dermatology, 2020, 140, 1485.	0.3	Ο
8	Small-scale demixing in confluent biological tissues. Soft Matter, 2020, 16, 3325-3337.	1.2	34
9	Regulated in Development and DNA Damage Responses 1 Prevents Dermal Adipocyte Differentiation and Is Required for Hair Cycle–Dependent Dermal Adipose Expansion. Journal of Investigative Dermatology, 2020, 140, 1698-1705.e1.	0.3	7
10	Skin in the Game: Stem Cells in Repair, Cancer, and Homeostasis. Cell, 2020, 181, 492-494.	13.5	3
11	Dermal Adipocyte Lipolysis and Myofibroblast Conversion Are Required for Efficient Skin Repair. Cell Stem Cell, 2020, 26, 880-895.e6.	5.2	154
12	Diversity is Excellence: Initiatives in the Society for Investigative Dermatology to Broaden Participation. Journal of Investigative Dermatology, 2019, 139, 2217-2219.	0.3	1
13	Lifting Each Other Up: Epidermal Stem Cells in Tissue Homeostasis. Developmental Cell, 2019, 51, 296-298.	3.1	Ο
14	Thin Skinned: Aged Adipocyte Atrophy Impacts Innate Immunity. Trends in Immunology, 2019, 40, 175-177.	2.9	4
15	Anatomical, Physiological, and Functional Diversity of Adipose Tissue. Cell Metabolism, 2018, 27, 68-83.	7.2	298
16	Myofibroblast proliferation and heterogeneity are supported by macrophages during skin repair. Science, 2018, 362, .	6.0	318
17	Adipocyte hypertrophy and lipid dynamics underlie mammary gland remodeling after lactation. Nature Communications, 2018, 9, 3592.	5.8	76
18	Tregs Expand the Skin Stem Cell Niche. Developmental Cell, 2017, 41, 455-456.	3.1	4

VALERIE HORSLEY

#	Article	IF	CITATIONS
19	Repeal and Replace: Adipocyte Regeneration in Wound Repair. Cell Stem Cell, 2017, 20, 424-426.	5.2	23
20	E-cadherin integrates mechanotransduction and EGFR signaling to control junctional tissue polarization and tight junction positioning. Nature Communications, 2017, 8, 1250.	5.8	147
21	Prdm1 Regulates Thymic Epithelial Function To Prevent Autoimmunity. Journal of Immunology, 2017, 199, 1250-1260.	0.4	53
22	Interactions between Lymphangiogenesis and Angiogenesis During Dermal Wound Healing. Journal of the American College of Surgeons, 2017, 225, e88-e89.	0.2	0
23	PDGFA regulation of dermal adipocyte stem cells. Stem Cell Investigation, 2017, 4, 72-72.	1.3	3
24	Montagna Symposium 2015: Harnessing Stem Cells toÂReveal Novel Skin Biology and Disease Treatments. Journal of Investigative Dermatology, 2016, 136, 893-896.	0.3	0
25	Pigment epitheliumâ€derived factor restoration increases bone mass and improves bone plasticity in a model of osteogenesis imperfecta type VI <i>via</i> Wnt3a blockade. FASEB Journal, 2016, 30, 2837-2848.	0.2	28
26	The Role of Adipocytes in Tissue Regeneration and Stem Cell Niches. Annual Review of Cell and Developmental Biology, 2016, 32, 609-631.	4.0	43
27	Classical cadherins control polarized organization of junctions and cytoskeleton in stratified epithelia. Journal of Dermatological Science, 2016, 84, e112.	1.0	0
28	Skin Adipocyte Stem Cell Self-Renewal Is Regulated by a PDGFA/AKT-Signaling Axis. Cell Stem Cell, 2016, 19, 738-751.	5.2	105
29	CD301b+ Macrophages Are Essential forÂEffective Skin Wound Healing. Journal of Investigative Dermatology, 2016, 136, 1885-1891.	0.3	111
30	Edges of human embryonic stem cell colonies display distinct mechanical properties and differentiation potential. Scientific Reports, 2015, 5, 14218.	1.6	80
31	Origin of fibrosing cells in systemic sclerosis. Current Opinion in Rheumatology, 2015, 27, 555-562.	2.0	38
32	Transcriptional Profiling of Ectoderm Specification to Keratinocyte Fate in Human Embryonic Stem Cells. PLoS ONE, 2015, 10, e0122493.	1.1	13
33	Nuclear–cytoskeletal linkages facilitate cross talk between the nucleus and intercellular adhesions. Journal of Cell Biology, 2015, 209, 403-418.	2.3	60
34	Dermal white adipose tissue: a new component of the thermogenic response. Journal of Lipid Research, 2015, 56, 2061-2069.	2.0	104
35	Loss of endogenous Nfatc1 reduces the rate of DMBA/TPA-induced skin tumorigenesis. Molecular Biology of the Cell, 2015, 26, 3606-3614.	0.9	17
36	Characterization of Cre recombinase models for the study of adipose tissue. Adipocyte, 2014, 3, 206-211.	1.3	178

VALERIE HORSLEY

#	Article	IF	CITATIONS
37	Calcineurin/Nfatc1 signaling links skin stem cell quiescence to hormonal signaling during pregnancy and lactation. Genes and Development, 2014, 28, 983-994.	2.7	42
38	Defining dermal adipose tissue. Experimental Dermatology, 2014, 23, 629-631.	1.4	218
39	Developing stratified epithelia: lessons from the epidermis and thymus. Wiley Interdisciplinary Reviews: Developmental Biology, 2014, 3, 389-402.	5.9	26
40	Epithelial Stem Cells in Adult Skin. Current Topics in Developmental Biology, 2014, 107, 109-131.	1.0	36
41	Pygo2 regulates β-catenin–induced activation of hair follicle stem/progenitor cells and skin hyperplasia. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10215-10220.	3.3	21
42	Cadherin-based intercellular adhesions organize epithelial cell–matrix traction forces. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 842-847.	3.3	215
43	IL-22 Promotes Fibroblast-Mediated Wound Repair in the Skin. Journal of Investigative Dermatology, 2013, 133, 1321-1329.	0.3	140
44	Intradermal adipocytes mediate fibroblast recruitment during skin wound healing. Development (Cambridge), 2013, 140, 1517-1527.	1.2	255
45	Split decisions: oesophageal progenitor cell behaviour. EMBO Journal, 2012, 31, 3653-3654.	3.5	0
46	Scaling of Traction Forces with the Size of Cohesive Cell Colonies. Physical Review Letters, 2012, 108, 198101.	2.9	158
47	Development and homeostasis of the sebaceous gland. Seminars in Cell and Developmental Biology, 2012, 23, 928-936.	2.3	115
48	Unravelling hair follicle–adipocyte communication. Experimental Dermatology, 2012, 21, 827-830.	1.4	68
49	Home sweet home: skin stem cell niches. Cellular and Molecular Life Sciences, 2012, 69, 2573-2582.	2.4	80
50	Adipocyte Lineage Cells Contribute to the Skin Stem Cell Niche to Drive Hair Cycling. Cell, 2011, 146, 761-771.	13.5	502
51	Ferreting out stem cells from their niches. Nature Cell Biology, 2011, 13, 513-518.	4.6	80
52	Upward bound: follicular stem cell fate decisions. EMBO Journal, 2011, 30, 2986-2987.	3.5	4
53	Valerie Horsley: Getting under the skin. Journal of Cell Biology, 2009, 184, 466-467.	2.3	0
54	FOXC2 controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1. Journal of Cell Biology, 2009, 185, 439-457.	2.3	295

VALERIE HORSLEY

#	Article	IF	CITATIONS
55	Epigenetics, Wnt signaling, and stem cells: the Pygo2 connection. Journal of Cell Biology, 2009, 185, 761-763.	2.3	6
56	NFATc1 Balances Quiescence and Proliferation of Skin Stem Cells. Cell, 2008, 132, 299-310.	13.5	383
57	More than one way to skin Genes and Development, 2008, 22, 976-985.	2.7	192
58	Epithelial Stem Cells: Turning over New Leaves. Cell, 2007, 128, 445-458.	13.5	511
59	Blimp1 Defines a Progenitor Population that Governs Cellular Input to the Sebaceous Gland. Cell, 2006, 126, 597-609.	13.5	396
60	Forming a Multinucleated Cell: Molecules That Regulate Myoblast Fusion. Cells Tissues Organs, 2004, 176, 67-78.	1.3	211
61	IL-4 Acts as a Myoblast Recruitment Factor during Mammalian Muscle Growth. Cell, 2003, 113, 483-494.	13.5	446
62	Prostaglandin F2α stimulates growth of skeletal muscle cells via an NFATC2-dependent pathway. Journal of Cell Biology, 2003, 161, 111-118.	2.3	140
63	Cell Fusion in Skeletal Muscle: Central Role of NFATC2 in Regulating Muscle Cell Size. Cell Cycle, 2003, 2, 419-422.	1.3	72
64	Nfat. Journal of Cell Biology, 2002, 156, 771-774.	2.3	309
65	Regulation of the Growth of Multinucleated Muscle Cells by an Nfatc2-Dependent Pathway. Journal of Cell Biology, 2001, 153, 329-338.	2.3	230
66	Calcineurin Activity Is Required for the Initiation of Skeletal Muscle Differentiation. Journal of Cell Biology, 2000, 149, 657-666.	2.3	218