Sambaran Banerjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2995683/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stellar-mass black holes in star clusters: implications for gravitational wave radiation. Monthly Notices of the Royal Astronomical Society, 2010, 402, 371-380.	4.4	198
2	A multiphysics and multiscale software environment for modeling astrophysical systems. New Astronomy, 2009, 14, 369-378.	1.8	146
3	Stellar-mass black holes in young massive and open stellar clusters and their role in gravitational-wave generation – II. Monthly Notices of the Royal Astronomical Society, 2018, 473, 909-926.	4.4	116
4	Stellar-mass black holes in young massive and open stellar clusters and their role in gravitational-wave generation. Monthly Notices of the Royal Astronomical Society, 0, , stw3392.	4.4	102
5	BSE versus StarTrack: Implementations of new wind, remnant-formation, and natal-kick schemes in NBODY7 and their astrophysical consequences. Astronomy and Astrophysics, 2020, 639, A41.	5.1	73
6	Stellar-mass black holes in young massive and open stellar clusters – IV. Updated stellar-evolutionary and black hole spin models and comparisons with the LIGO-Virgo O1/O2 merger-event data. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3002-3026.	4.4	69
7	The formation of NGC 3603 young starburst cluster: â€~prompt' hierarchical assembly or monolithic starburst?. Monthly Notices of the Royal Astronomical Society, 2015, 447, 728-746.	4.4	63
8	RUNAWAY MASSIVE STARS FROM R136: VFTS 682 IS VERY LIKELY A "SLOW RUNAWAY― Astrophysical Journal, 2012, 746, 15.	4.5	60
9	How can young massive clusters reach their present-day sizes?. Astronomy and Astrophysics, 2017, 597, A28.	5.1	53
10	The bound fraction of young star clusters. Astronomy and Astrophysics, 2017, 600, A49.	5.1	51
11	DID THE INFANT R136 AND NGC 3603 CLUSTERS UNDERGO RESIDUAL GAS EXPULSION?. Astrophysical Journal, 2013, 764, 29.	4.5	49
12	The emergence of super-canonical stars in R136-type starburst clusters. Monthly Notices of the Royal Astronomical Society, 2012, 426, 1416-1426.	4.4	47
13	Stellar-mass black holes in young massive and open stellar clusters and their role in gravitational-wave generation III: dissecting black hole dynamics. Monthly Notices of the Royal Astronomical Society, 2018, 481, 5123-5145.	4.4	40
14	A PERFECT STARBURST CLUSTER MADE IN ONE GO: THE NGC 3603 YOUNG CLUSTER. Astrophysical Journal, 2014, 787, 158.	4.5	38
15	A NEW TYPE OF COMPACT STELLAR POPULATION: DARK STAR CLUSTERS. Astrophysical Journal Letters, 2011, 741, L12.	8.3	36
16	Black hole mergers in compact star clusters and massive black hole formation beyond the mass gap. Monthly Notices of the Royal Astronomical Society, 2022, 512, 884-898.	4.4	27
17	Demographics of Neutron Stars in Young Massive and Open Clusters. Astrophysical Journal Letters, 2020, 901, L16.	8.3	24
18	Preparing the next gravitational million-body simulations: evolution of single and binary stars in <tt> <scp>nbody6++gpu</scp> </tt> , <tt> <scp>mocca</scp> </tt> , and <tt> <scp>mcluster</scp> </tt> . Monthly Notices of the Royal Astronomical Society, 2022, 511, 4060-4089.	4.4	24

#	Article	IF	CITATIONS
19	Neutron stars and millisecond pulsars in star clusters: implications for the diffuse Î ³ -radiation from the Galactic Centre. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	23
20	Possible smoking-gun evidence for initial mass segregation in re-virialized post-gas expulsion globular clusters. Monthly Notices of the Royal Astronomical Society, 2015, 454, 3872-3885.	4.4	21
21	Stellar-mass black holes in young massive and open stellar clusters – V. comparisons with LIGO-Virgo merger rate densities. Monthly Notices of the Royal Astronomical Society, 2021, 503, 3371-3385.	4.4	21
22	Formation of Very Young Massive Clusters and Implications for Globular Clusters. Astrophysics and Space Science Library, 2018, , 143-193.	2.7	16
23	Binary Black Hole Mergers from Young Massive and Open Clusters: Comparison to GWTC-2 Gravitational Wave Data. Astrophysical Journal Letters, 2021, 913, L29.	8.3	16
24	LISA sources from young massive and open stellar clusters. Physical Review D, 2020, 102, .	4.7	11
25	R144: a very massive binary likely ejected from R136 through a binary–binary encounter. Monthly Notices of the Royal Astronomical Society, 2014, 437, 4000-4005.	4.4	8
26	A Monte Carlo study of early gas expulsion and evolution of star clusters: new simulations with the MOCCA code in the <scp>amuse</scp> framework. Monthly Notices of the Royal Astronomical Society, 2022, 514, 5739-5750.	4.4	8
27	Merger rate density of stellar-mass binary black holes from young massive clusters, open clusters, and isolated binaries: Comparisons with LIGO-Virgo-KAGRA results. Physical Review D, 2022, 105, .	4.7	7
28	Evolution of Compact Binary Populations in Globular Clusters: A Boltzmann Study. I. The Continuous Limit. Astrophysical Journal, 2007, 670, 1090-1103.	4.5	4
29	Evolution of Compact Binary Populations in Globular Clusters: A Boltzmann Study. II. Introducing Stochasticity. Astrophysical Journal, 2008, 680, 1438-1449.	4.5	3
30	Evolution of Compact Binary Populations in Globular Clusters: a Boltzmann Study. Proceedings of the International Astronomical Union, 2007, 3, 246-250.	0.0	0
31	Stellar-mass black holes in star clusters: implications for gravitational-wave radiation. Proceedings of the International Astronomical Union, 2009, 5, 213-218.	0.0	0
32	Initial conditions of formation of starburst clusters: constraints from stellar dynamics. Proceedings of the International Astronomical Union, 2015, 12, 228-233.	0.0	0