Avraham Ashkenazi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2995290/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fatty acid balance regulates α-synuclein pathology. Trends in Neurosciences, 2022, 45, 417-418.	8.6	1
2	SnapShot: Autonomic nervous system disorders. Neuron, 2022, 110, 1432-1432.e1.	8.1	1
3	Compounds activating VCP D1 ATPase enhance both autophagic and proteasomal neurotoxic protein clearance. Nature Communications, 2022, 13, .	12.8	11
4	VCP/p97 regulates Beclin-1-dependent autophagy initiation. Nature Chemical Biology, 2021, 17, 448-455.	8.0	61
5	VCP/p97 modulates PtdIns3P production and autophagy initiation. Autophagy, 2021, 17, 1052-1053.	9.1	2
6	Parkinson's disease outside the brain: targeting the autonomic nervous system. Lancet Neurology, The, 2021, 20, 868-876.	10.2	32
7	Deubiquitylating enzymes in neuronal health and disease. Cell Death and Disease, 2021, 12, 120.	6.3	13
8	Generation and characterization of iPSC lines (BGUi004-A, BGUi005-A) from two identical twins with polyalanine expansion in the paired-like homeobox 2B (PHOX2B) gene. Stem Cell Research, 2020, 48, 101955.	0.7	11
9	Lipids as the key to understanding α-synuclein behaviour in Parkinson disease. Nature Reviews Molecular Cell Biology, 2020, 21, 357-358.	37.0	16
10	The Nucleolus asÂaÂProteostasis Regulator. Trends in Cell Biology, 2019, 29, 849-851.	7.9	14
11	Ubiquitin Signaling and Degradation of Aggregate-Prone Proteins. Trends in Biochemical Sciences, 2019, 44, 872-884.	7.5	57
12	The Cell-Death-Associated Polymer PAR Feeds Forward α-Synuclein Toxicity in Parkinson's Disease. Molecular Cell, 2019, 73, 5-6.	9.7	15
13	Genetic enhancement of macroautophagy in vertebrate models of neurodegenerative diseases. Neurobiology of Disease, 2019, 122, 3-8.	4.4	15
14	The RAB11A-Positive Compartment Is a Primary Platform for Autophagosome Assembly Mediated by WIPI2 Recognition of PI3P-RAB11A. Developmental Cell, 2018, 45, 114-131.e8.	7.0	147
15	Transbilayer phospholipid movement facilitates annexin translocation across membranes. Journal of Cell Science, 2018, 131, .	2.0	16
16	Contact inhibition controls cell survival and proliferation via YAP/TAZ-autophagy axis. Nature Communications, 2018, 9, 2961.	12.8	193
17	Neurodegenerative Diseases and Autophagy. , 2018, , 299-343.		1
18	Autophagy and Neurodegeneration: Pathogenic Mechanisms and Therapeutic Opportunities. Neuron, 2017, 93, 1015-1034.	8.1	860

AVRAHAM ASHKENAZI

#	Article	IF	CITATIONS
19	Polyglutamine tracts regulate beclin 1-dependent autophagy. Nature, 2017, 545, 108-111.	27.8	288
20	Polyglutamine tracts regulate autophagy. Autophagy, 2017, 13, 1613-1614.	9.1	23
21	The Parkinson's disease-associated genes ATP13A2 and SYT11 regulate autophagy via a common pathway. Nature Communications, 2016, 7, 11803.	12.8	154
22	Mammalian Autophagy: How Does It Work?. Annual Review of Biochemistry, 2016, 85, 685-713.	11.1	578
23	PI(5)P Regulates Autophagosome Biogenesis. Molecular Cell, 2015, 57, 219-234.	9.7	230
24	Early and late HIV-1 membrane fusion events are impaired by sphinganine lipidated peptides that target the fusion site. Biochemical Journal, 2014, 461, 213-222.	3.7	13
25	HIV-1 fusion protein exerts complex immunosuppressive effects. Trends in Biochemical Sciences, 2013, 38, 345-349.	7.5	18
26	An Immunomodulating Motif of the HIV-1 Fusion Protein Is Chirality-independent. Journal of Biological Chemistry, 2013, 288, 32852-32860.	3.4	6
27	Viral Fusion Peptides. , 2013, , 1904-1911.		0
28	Structural and Functional Properties of the Membranotropic HIV-1 Glycoprotein gp41 Loop Region Are Modulated by Its Intrinsic Hydrophobic Core. Journal of Biological Chemistry, 2013, 288, 29143-29150.	3.4	4
29	A highly conserved sequence associated with the HIV gp41 loop region is an immunomodulator of antigen-specific T cells in mice. Blood, 2013, 121, 2244-2252.	1.4	19
30	Peptide Interaction with and Insertion into Membranes. Methods in Molecular Biology, 2013, 1033, 173-183.	0.9	2
31	Intramolecular Interactions within the Human Immunodeficiency Virus-1 gp41 Loop Region and Their Involvement in Lipid Merging. Biochemistry, 2012, 51, 6981-6989.	2.5	9
32	Sphingopeptides: dihydrosphingosineâ€based fusion inhibitors against wildâ€ŧype and enfuvirtideâ€ŧesistant HIVâ€1. FASEB Journal, 2012, 26, 4628-4636.	0.5	31
33	Multifaceted action of Fuzeon as virus–cell membrane fusion inhibitor. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2352-2358.	2.6	40
34	Insights into the mechanism of HIV-1 envelope induced membrane fusion as revealed by its inhibitory peptides. European Biophysics Journal, 2011, 40, 349-357.	2.2	29
35	Viral envelope protein folding and membrane hemifusion are enhanced by the conserved loop region of HIVâ€1 gp41. FASEB Journal, 2011, 25, 2156-2166.	0.5	16
36	Virusâ€cell and cellâ€cell fusion mediated by the HIVâ€1 envelope glycoprotein is inhibited by short gp41 Nâ€terminal membraneâ€anchored peptides lacking the critical pocket domain. FASEB Journal, 2010, 24, 4196-4202.	0.5	28