Damiano Rizzoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2995064/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microcirculation and Macrocirculation in Hypertension: A Dangerous Cross-Link?. Hypertension, 2022, 79, 479-490.	2.7	41
2	Immune System and Microvascular Remodeling in Humans. Hypertension, 2022, 79, 691-705.	2.7	30
3	New Noninvasive Methods to Evaluate Microvascular Structure and Function. Hypertension, 2022, 79, 874-886.	2.7	21
4	Arterial Hypertension and the Hidden Disease of the Eye: Diagnostic Tools and Therapeutic Strategies. Nutrients, 2022, 14, 2200.	4.1	4
5	Comparison of the characteristics, morbidity and mortality of COVID-19 between first and second/third wave in a hospital setting in Lombardy: a retrospective cohort study. Internal and Emergency Medicine, 2022, 17, 1941-1949.	2.0	17
6	Assessment and pathophysiology of microvascular disease: recent progress and clinical implications. European Heart Journal, 2021, 42, 2590-2604.	2.2	74
7	Optical coherence tomography angiography and arterial hypertension: A role in identifying subclinical microvascular damage?. European Journal of Ophthalmology, 2021, 31, 158-165.	1.3	50
8	Microvascular Structural Alterations in Cancer Patients Treated With Antiangiogenic Drugs. Frontiers in Cardiovascular Medicine, 2021, 8, 651594.	2.4	4
9	Short-Term Consequences of SARS-CoV-2-Related Pneumonia: A Follow Up Study. High Blood Pressure and Cardiovascular Prevention, 2021, 28, 373-381.	2.2	18
10	Co-infection of chlamydia pneumoniae and mycoplasma pneumoniae with SARS-CoV-2 is associated with more severe features. Journal of Infection, 2021, 82, e4-e7.	3.3	23
11	Determinants of healing among patients with coronavirus disease 2019: the results of the SARS-RAS study of the Italian Society of Hypertension. Journal of Hypertension, 2021, 39, 376-380.	0.5	20
12	Platypnoea-Orthodeoxia Syndrome in COVID-19. European Journal of Case Reports in Internal Medicine, 2021, 8, 002849.	0.4	1
13	Commentary on "Pathways of Microcirculatory Endothelial Dysfunction in OSA: A Comprehensive Ex Vivo Evaluation in Human Tissue― American Journal of Hypertension, 2021, , .	2.0	0
14	Gender differences in predictors of intensive care units admission among COVID-19 patients: The results of the SARS-RAS study of the Italian Society of Hypertension. PLoS ONE, 2020, 15, e0237297.	2.5	51
15	Early use of low dose tocilizumab in patients with COVID-19: A retrospective cohort study with a complete follow-up. EClinicalMedicine, 2020, 25, 100459.	7.1	61
16	Evaluation of Cardiovascular Risk in Patient with Primary Non-alcoholic Fatty Liver Disease. High Blood Pressure and Cardiovascular Prevention, 2020, 27, 321-330.	2.2	5
17	Tocilizumab for the treatment of severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: A single center study of 100 patients in Brescia, Italy. Autoimmunity Reviews, 2020, 19, 102568.	5.8	637
18	Age and Multimorbidity Predict Death Among COVID-19 Patients. Hypertension, 2020, 76, 366-372.	2.7	330

#	Article	IF	CITATIONS
19	How important is blood pressure variability?. European Heart Journal Supplements, 2020, 22, E1-E6.	0.1	54
20	The Complex Relationship Between Serum Uric Acid, Endothelial Function and Small Vessel Remodeling in Humans. Journal of Clinical Medicine, 2020, 9, 2027.	2.4	12
21	Noninvasive evaluation of the retinal microvasculature: is all that glitters gold?. Journal of Hypertension, 2020, 38, 203-205.	0.5	2
22	Prognostic factors and predictors of outcome in patients with COVID-19 and related pneumonia: a retrospective cohort study. Bioscience Reports, 2020, 40, .	2.4	24
23	Organ Damage. Updates in Hypertension and Cardiovascular Protection, 2020, , 181-195.	0.1	Ο
24	Unattended versus attended blood pressure measurement: Mean values and determinants of the difference. International Journal of Cardiology, 2019, 274, 305-310.	1.7	26
25	Unattended Versus Attended Blood Pressure Measurement. Hypertension, 2019, 73, 736-742.	2.7	33
26	Vitamin D and Ischaemic Heart Disease: A Casual or A Causal Association?. High Blood Pressure and Cardiovascular Prevention, 2019, 26, 151-155.	2.2	1
27	Vascular Aging and Disease of the Small Vessels. High Blood Pressure and Cardiovascular Prevention, 2019, 26, 183-189.	2.2	42
28	The importance of endothelial dysfunction in resistance artery remodelling and cardiovascular risk. Cardiovascular Research, 2019, 116, 429-437.	3.8	20
29	The smoothness index. Journal of Hypertension, 2019, 37, 2341-2344.	0.5	1
30	Microvascular Structural Alterations and Tissue Perfusion in Hypertension/Diabetes. Updates in Hypertension and Cardiovascular Protection, 2019, , 183-196.	0.1	0
31	Age- and Sex-Specific Reference Values for Media/Lumen Ratio in Small Arteries and Relationship With Risk Factors. Hypertension, 2018, 71, 1193-1200.	2.7	22
32	New Methods to Study the Microcirculation. American Journal of Hypertension, 2018, 31, 265-273.	2.0	35
33	Comparison between invasive and noninvasive techniques of evaluation of microvascular structural alterations. Journal of Hypertension, 2018, 36, 1154-1163.	0.5	31
34	Changes in extracellular matrix in subcutaneous small resistance arteries of patients with essential hypertension. Blood Pressure, 2018, 27, 231-239.	1.5	12
35	Endothelial factors in the pathogenesis and treatment of chronic kidney disease Part I. Journal of Hypertension, 2018, 36, 451-461.	0.5	19
36	Carotid stiffness is significantly correlated with wall-to-lumen ratio of retinal arterioles. Journal of Hypertension, 2018, 36, 580-586.	0.5	11

#	Article	IF	CITATIONS
37	Microvascular Density and Circulating Endothelial Progenitor Cells Before and After Treatment with Incretin Mimetics in Diabetic Patients. High Blood Pressure and Cardiovascular Prevention, 2018, 25, 369-378.	2.2	9
38	Management of VEGF-Targeted Therapy-Induced Hypertension. Current Hypertension Reports, 2018, 20, 68.	3.5	25
39	Modulation of Vascular Reactivity by Perivascular Adipose Tissue (PVAT). Current Hypertension Reports, 2018, 20, 44.	3.5	37
40	Decreased circulating T regulatory lymphocytes in obese patients undergoing bariatric surgery. PLoS ONE, 2018, 13, e0197178.	2.5	22
41	Relationship between different subpopulations of circulating CD4+ T lymphocytes and microvascular or systemic oxidative stress in humans. Blood Pressure, 2017, 26, 237-245.	1.5	10
42	Microvascular structure as a prognostically relevant endpoint. Journal of Hypertension, 2017, 35, 914-921.	0.5	54
43	Hemodynamic Consequences of Changes in Microvascular Structure. American Journal of Hypertension, 2017, 30, 939-946.	2.0	31
44	Use of Antihypertensive Drugs in Neoplastic Patients. High Blood Pressure and Cardiovascular Prevention, 2017, 24, 127-132.	2.2	11
45	Relationship Between Different Subpopulations of Circulating CD4+ T-lymphocytes and Microvascular Structural Alterations in Humans. American Journal of Hypertension, 2017, 30, 51-60.	2.0	21
46	Comparison of lercanidipine plus hydrochlorothiazide vs. lercanidipine plus enalapril on micro and macrocirculation in patients with mild essential hypertension. Internal and Emergency Medicine, 2017, 12, 963-974.	2.0	12
47	Assessment of retinal arteriolar morphology by noninvasive methods. Journal of Hypertension, 2016, 34, 1044-1046.	0.5	7
48	Effect of antihypertensive treatment with lercanidipine on endothelial progenitor cells and inflammation in patients with mild to moderate essential hypertension. Blood Pressure, 2016, 25, 337-343.	1.5	11
49	Fixed-dose lercanidipine and enalapril in field practice: a meta-analysis. Current Medical Research and Opinion, 2016, 32, 13-15.	1.9	0
50	Dose–response effect of the lercanidipine/enalapril combination: a pooled analysis. Current Medical Research and Opinion, 2016, 32, 17-23.	1.9	1
51	Masked Hypertension: How to Identify and When to Treat?. High Blood Pressure and Cardiovascular Prevention, 2016, 23, 181-186.	2.2	8
52	Blockade of the renin–angiotensin system in small arteries and anticontractile function of perivascular adipose tissue. Journal of Hypertension, 2015, 33, 1039-1045.	0.5	24
53	Targeting Central Blood Pressure Through the Macro- and Microcirculation Cross-Talk. , 2015, , 297-307.		5
54	Interactions Between Macro- and Micro-Circulation: Are They Relevant?. High Blood Pressure and Cardiovascular Prevention, 2015, 22, 119-128.	2.2	14

#	Article	IF	CITATIONS
55	Cerebral small-resistance artery structure and cerebral blood flow in normotensive subjects and hypertensive patients. Neuroradiology, 2014, 56, 1103-1111.	2.2	18
56	Anticontractile activity of perivascular fat in obese mice and the effect of long-term treatment with melatonin. Journal of Hypertension, 2014, 32, 1264-1274.	0.5	44
57	Evaluation of microvascular structure in humans. Journal of Hypertension, 2014, 32, 2120-2129.	0.5	53
58	Effect of antihypertensive treatment on microvascular structure, central blood pressure and oxidative stress in patients with mild essential hypertension. Journal of Hypertension, 2014, 32, 565-574.	0.5	38
59	Relationship of Wall-to-Lumen Ratio of Retinal Arterioles With Clinic and 24-Hour Blood Pressure. Hypertension, 2014, 63, 1110-1115.	2.7	59
60	Effects of a Long-Term Treatment With Aliskiren or Ramipril on Structural Alterations of Subcutaneous Small-Resistance Arteries of Diabetic Hypertensive Patients. Hypertension, 2014, 64, 717-724.	2.7	25
61	Inhibitors of Angiogenesis and Blood Pressure. Current Cardiovascular Risk Reports, 2013, 7, 244-247.	2.0	5
62	Circulating endothelial progenitor cells, microvascular density and fibrosis in obesity before and after bariatric surgery. Blood Pressure, 2013, 22, 165-172.	1.5	37
63	Pulsatile Hemodynamics and Microcirculation. Hypertension, 2013, 61, 130-136.	2.7	86
64	Relationship between media-to-lumen ratio of subcutaneous small arteries and wall-to-lumen ratio of retinal arterioles evaluated noninvasively by scanning laser Doppler flowmetry. Journal of Hypertension, 2012, 30, 1169-1175.	0.5	85
65	Structural abnormalities of small resistance arteries in essential hypertension. Internal and Emergency Medicine, 2012, 7, 205-212.	2.0	74
66	Structural Alterations in Small Resistance Arteries in Obesity. Basic and Clinical Pharmacology and Toxicology, 2012, 110, 56-62.	2.5	18
67	How to Assess Microvascular Structure in Humans. High Blood Pressure and Cardiovascular Prevention, 2011, 18, 169-177.	2.2	39
68	Effects of Weight Loss on Structural and Functional Alterations of Subcutaneous Small Arteries in Obese Patients. Hypertension, 2011, 58, 29-36.	2.7	72
69	Effect of antihypertensive treatment on circulating endothelial progenitor cells in patients with mild essential hypertension. Blood Pressure, 2011, 20, 77-83.	1.5	15
70	Regression of Small Resistance Artery Structural Alterations in Hypertension by Appropriate Antihypertensive Treatment. Current Hypertension Reports, 2010, 12, 80-85.	3.5	20
71	Response to Reduction of Myeloperoxidase Activity by Melatonin and Pycnogenol May Contribute to their Blood Pressure Lowering Effect. Hypertension, 2010, 56, .	2.7	2
72	Functional alterations of mesenteric small resistance arteries in Milan hypertensive and normotensive rats. Hypertension Research, 2009, 32, 581-585.	2.7	6

#	Article	IF	CITATIONS
73	Hypertrophic Remodeling of Subcutaneous Small Resistance Arteries in Patients with Cushing's Syndrome. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 5010-5018.	3.6	40
74	Vascular remodeling, macro- and microvessels: Therapeutic implications. Blood Pressure, 2009, 18, 242-246.	1.5	3
75	Immunohistochemical evaluation of microvascular rarefaction in hypertensive humans and in spontaneously hypertensive rats. Clinical Hemorheology and Microcirculation, 2009, 42, 259-268.	1.7	52
76	Vascular remodeling, macro- and microvessels: Therapeutic implications. Blood Pressure, 2009, 18, 242-246.	1.5	48
77	Effects of antihypertensive treatment on small artery remodelling. Journal of Hypertension, 2009, 27, 1107-1114.	0.5	100
78	Altered structure of small cerebral arteries in patients with essential hypertension. Journal of Hypertension, 2009, 27, 838-845.	0.5	84
79	Coronary Flow Reserve and Small Artery Remodelling in Hypertensive Patients. High Blood Pressure and Cardiovascular Prevention, 2008, 15, 127-134.	2.2	3
80	Vascular Remodeling and Duration of Hypertension Predict Outcome of Adrenalectomy in Primary Aldosteronism Patients. Hypertension, 2008, 51, 1366-1371.	2.7	197
81	Determinants of the structure of resistanceâ€sized arteries in hypertensive patients. Blood Pressure, 2008, 17, 204-211.	1.5	13
82	Prognostic role of flow-mediated dilatation of the brachial artery in hypertensive patients. Journal of Hypertension, 2008, 26, 1612-1618.	0.5	83
83	Angiotensin receptor blockers improve insulin signaling and prevent microvascular rarefaction in the skeletal muscle of spontaneously hypertensive rats. Journal of Hypertension, 2008, 26, 1595-1601.	0.5	23
84	Morning rise of blood pressure and subcutaneous small resistance artery structure. Journal of Hypertension, 2007, 25, 1698-1703.	0.5	43
85	Structural Alterations of Subcutaneous Small-Resistance Arteries May Predict Major Cardiovascular Events in Patients With Hypertension. American Journal of Hypertension, 2007, 20, 846-852.	2.0	128
86	The Effects of Hypertension on the Structure of Human Resistance Vessels. , 2007, , 579-589.		20
87	Remodelling of Small Resistance Arteries in Essential Hypertension. High Blood Pressure and Cardiovascular Prevention, 2006, 13, 1-6.	2.2	5
88	Lack of prognostic role of endothelial dysfunction in subcutaneous small resistance arteries of hypertensive patients. Journal of Hypertension, 2006, 24, 867-873.	0.5	21
89	Small artery remodeling in hypertension and diabetes. Current Hypertension Reports, 2006, 8, 90-95.	3.5	60
90	Changes in Extracellular Matrix in Subcutaneous Small Resistance Arteries of Patients with Primary Aldosteronism. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 2638-2642.	3.6	84

#	Article	IF	CITATIONS
91	Small artery structure and hypertension: adaptive changes and target organ damage. Journal of Hypertension, 2005, 23, 247-250.	0.5	161
92	Effect of Treatment With Candesartan or Enalapril on Subcutaneous Small Artery Structure in Hypertensive Patients With Noninsulin-Dependent Diabetes Mellitus. Hypertension, 2005, 45, 659-665.	2.7	111
93	Effects of olmesartan and enalapril at low or high doses on cardiac, renal and vascular interstitial matrix in spontaneously hypertensive rats. Blood Pressure, 2005, 14, 184-192.	1.5	25
94	Acromegalic Patients Show the Presence of Hypertrophic Remodeling of Subcutaneous Small Resistance Arteries. Hypertension, 2004, 43, 561-565.	2.7	60
95	Left Ventricular Concentric Geometry During Treatment Adversely Affects Cardiovascular Prognosis in Hypertensive Patients. Hypertension, 2004, 43, 731-738.	2.7	284
96	Bradykinin and matrix metalloproteinases are involved the structural alterations of rat small resistance arteries with inhibition of ACE and NEP. Journal of Hypertension, 2004, 22, 759-766.	0.5	22
97	Acromegalic Patients Show the Presence of Hypertrophic Remodeling of Subcutaneous Small Resistance Arteries. Hypertension, 2004, 43, 561-565.	2.7	21
98	Left ventricular mass and function are related to collagen turnover markers in essential hypertension. American Journal of Hypertension, 2003, 16, A4.	2.0	4
99	Prognostic Significance of Small-Artery Structure in Hypertension. Circulation, 2003, 108, 2230-2235.	1.6	455
100	Effects of Losartan and Enalapril at Different Doses on Cardiac and Renal Interstitial Matrix in Spontaneously Hypertensive Rats. Clinical and Experimental Hypertension, 2003, 25, 427-441.	1.3	20
101	Adrenergic mechanisms and remodeling of subcutaneous small resistance arteries in humans. Journal of Hypertension, 2003, 21, 2345-2352.	0.5	36
102	Relationships between coronary flow vasodilator capacity and small artery remodelling in hypertensive patients Journal of Hypertension, 2003, 21, 625-631.	0.5	159
103	Structural Alterations in Subcutaneous Small Arteries of Normotensive and Hypertensive Patients With Non–Insulin-Dependent Diabetes Mellitus. Circulation, 2001, 103, 1238-1244.	1.6	281
104	Cellular Hypertrophy in Subcutaneous Small Arteries of Patients With Renovascular Hypertension. Hypertension, 2000, 35, 931-935.	2.7	100
105	Effect of Treatment on Flow-Dependent Vasodilation of the Brachial Artery in Essential Hypertension. Hypertension, 1999, 33, 575-580.	2.7	92
106	Endothelial Dysfunction in Hypertension Is Independent From the Etiology and From Vascular Structure. Hypertension, 1998, 31, 335-341.	2.7	93
107	Prolonged Effects of Short-Term Fosinopril on Blood Pressure and Vascular Morphology and Function in Rats. American Journal of Hypertension, 1997, 10, 1034-1043.	2.0	24
108	Vascular Hypertrophy and Remodeling in Secondary Hypertension. Hypertension, 1996, 28, 785-790.	2.7	189

#	Article	IF	CITATIONS
109	Effects of Low and High Doses of Fosinopril on the Structure and Function of Resistance Arteries. Hypertension, 1995, 26, 118-123.	2.7	59
110	Vascular Structural and Functional Alterations Before and After the Development of Hypertension in SHR. American Journal of Hypertension, 1994, 7, 193-200.	2.0	89