
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2994952/publications.pdf Version: 2024-02-01

ZHEN VIN

#	Article	IF	CITATIONS
1	Preparation of Au-BiVO ₄ Heterogeneous Nanostructures as Highly Efficient Visible-Light Photocatalysts. ACS Applied Materials & Interfaces, 2012, 4, 418-423.	8.0	259
2	Construction of a sp ³ /sp ² Carbon Interface in 3D Nâ€Doped Nanocarbons for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2019, 58, 15089-15097.	13.8	215
3	Highly selective palladium-copper bimetallic electrocatalysts for the electrochemical reduction of CO2 to CO. Nano Energy, 2016, 27, 35-43.	16.0	211
4	Hybrid Au–Ag Nanostructures for Enhanced Plasmon-Driven Catalytic Selective Hydrogenation through Visible Light Irradiation and Surface-Enhanced Raman Scattering. Journal of the American Chemical Society, 2018, 140, 864-867.	13.7	210
5	Supported Pd–Cu Bimetallic Nanoparticles That Have High Activity for the Electrochemical Oxidation of Methanol. Chemistry - A European Journal, 2012, 18, 4887-4893.	3.3	166
6	Principles and applications of photothermal catalysis. Chem Catalysis, 2022, 2, 52-83.	6.1	157
7	Porous Palladium Nanoflowers that Have Enhanced Methanol Electro-Oxidation Activity. Journal of Physical Chemistry C, 2009, 113, 1001-1005.	3.1	153
8	Impact of the Coordination Environment on Atomically Dispersed Pt Catalysts for Oxygen Reduction Reaction. ACS Catalysis, 2020, 10, 907-913.	11.2	121
9	Construction of Pd-based nanocatalysts for fuel cells: opportunities and challenges. Catalysis Science and Technology, 2014, 4, 4116-4128.	4.1	106
10	Engineering Interface with One-Dimensional Co ₃ O ₄ Nanostructure in Catalytic Membrane Electrode: Toward an Advanced Electrocatalyst for Alcohol Oxidation. ACS Nano, 2017, 11, 12365-12377.	14.6	103
11	Photothermal Conversion of CO ₂ with Tunable Selectivity Using Fe-Based Catalysts: From Oxide to Carbide. ACS Catalysis, 2020, 10, 10364-10374.	11.2	99
12	Monodispersed bimetallic PdAg nanoparticles with twinned structures: Formation and enhancement for the methanol oxidation. Scientific Reports, 2014, 4, 4288.	3.3	97
13	Controllable oxidation of glucose to gluconic acid and glucaric acid using an electrocatalytic reactor. Electrochimica Acta, 2014, 130, 170-178.	5.2	96
14	Supported bimetallic PdAu nanoparticles with superior electrocatalytic activity towards methanol oxidation. Journal of Materials Chemistry A, 2013, 1, 9157.	10.3	91
15	Cobalt/Nitrogenâ€Doped Porous Carbon Nanosheets Derived from Polymerizable Ionic Liquids as Bifunctional Electrocatalyst for Oxygen Evolution and Oxygen Reduction Reaction. ChemCatChem, 2017, 9, 1601-1609.	3.7	79
16	Interface construction of NiCo LDH/NiCoS based on the 2D ultrathin nanosheet towards oxygen evolution reaction. Nano Research, 2022, 15, 4986-4995.	10.4	71
17	Controllable oxidation of cyclohexane to cyclohexanol and cyclohexanone by a nano-MnOx/Ti electrocatalytic membrane reactor. Journal of Catalysis, 2015, 329, 187-194.	6.2	58
18	Wet-chemistry synthesis of cobalt carbide nanoparticles as highly active and stable electrocatalyst for hydrogen evolution reaction. Nano Research, 2017, 10, 1322-1328.	10.4	56

#	Article	IF	CITATIONS
19	Design of AgxAu1â^'x alloy/ZnIn2S4 system with tunable spectral response and Schottky barrier height for visible-light-driven hydrogen evolution. Chemical Engineering Journal, 2020, 382, 122953.	12.7	55
20	Plasmonic coupling enhancement of core-shell Au@Pt assemblies on ZnIn2S4 nanosheets towards photocatalytic H2 production. Applied Surface Science, 2021, 536, 147934.	6.1	52
21	Bifunctional three-dimensional self-supporting multistage structure CC@MOF-74(NiO)@NiCo LDH electrode for supercapacitors and non-enzymatic glucose sensors. Journal of Alloys and Compounds, 2021, 885, 160899.	5.5	50
22	Construction of a sp ³ /sp ² Carbon Interface in 3D Nâ€Doped Nanocarbons for the Oxygen Reduction Reaction. Angewandte Chemie, 2019, 131, 15233-15241.	2.0	49
23	In situ growth of Au nanoparticles on Fe2O3 nanocrystals for catalytic applications. CrystEngComm, 2012, 14, 7229.	2.6	48
24	Nano-V ₂ O ₅ /Ti porous membrane electrode with enhanced electrochemical activity for the high-efficiency oxidation of cyclohexane. Green Chemistry, 2018, 20, 3944-3953.	9.0	48
25	Construction of Stable Chainlike Au Nanostructures via Silica Coating and Exploration for Potential Photothermal Therapy. Small, 2014, 10, 3619-3624.	10.0	45
26	Fe5C2 nanoparticles as low-cost HER electrocatalyst: the importance of Co substitution. Science Bulletin, 2018, 63, 1358-1363.	9.0	45
27	Rattle-type Au@NiCo LDH hollow core-shell nanostructures for nonenzymatic glucose sensing. Journal of Electroanalytical Chemistry, 2020, 858, 113810.	3.8	45
28	Polymerizable ionic liquid as a precursor for N, P co-doped carbon toward the oxygen reduction reaction. Catalysis Science and Technology, 2018, 8, 1142-1150.	4.1	44
29	Optimal design and evaluation of electrocatalytic reactors with nano-MnOx/Ti membrane electrode for wastewater treatment. Chemical Engineering Journal, 2019, 376, 120190.	12.7	41
30	Synergy Promotion of Elemental Doping and Oxygen Vacancies in Fe ₂ O ₃ Nanorods for Photoelectrochemical Water Splitting. ACS Applied Nano Materials, 2022, 5, 6781-6791.	5.0	41
31	Template-directed growth of hierarchically structured MOF-derived LDH cage hybrid arrays for supercapacitor electrode. Journal of Electroanalytical Chemistry, 2019, 840, 174-181.	3.8	39
32	Polymerizable Ionic Liquid as Nitrogen-Doping Precursor for Co–N–C Catalyst with Enhanced Oxygen Reduction Activity. Industrial & Engineering Chemistry Research, 2015, 54, 7984-7989.	3.7	36
33	Rich Surface Oxygen Vacancies of MnO ₂ for Enhancing Electrocatalytic Oxygen Reduction and Oxygen Evolution Reactions. Advanced Energy and Sustainability Research, 2021, 2, 2100030.	5.8	35
34	TiO2 nanosheets with exposed {001} facets co-modified by AgxAu1â^'x NPs and 3D ZnIn2S4 microsphere for enhanced visible light absorption and photocatalytic H2 production. Applied Surface Science, 2019, 484, 1168-1175.	6.1	33
35	Direct conversion of CO and H2O into liquid fuels under mild conditions. Nature Communications, 2019, 10, 1389.	12.8	31
36	A three-stage fixed-bed electrochemical reactor for biologically treated landfill leachate treatment. Chemical Engineering Journal, 2019, 376, 121026.	12.7	31

#	Article	IF	CITATIONS
37	Highly efficient K-Fe/C catalysts derived from metal-organic frameworks towards ammonia synthesis. Nano Research, 2019, 12, 2341-2347.	10.4	30
38	Emulsion-assisted synthesis of monodisperse binary metal nanoparticles. Chemical Communications, 2010, 46, 1344.	4.1	28
39	Construction of ternary rGO/1D TiO2 nanotubes/3D ZnIn2S4 microsphere heterostructure and mutually-reinforcing synergy for high-efficiency H2 production photoactivity under visible light. Ceramics International, 2019, 45, 14976-14982.	4.8	27
40	3D Carbon Electrode with Hierarchical Nanostructure Based on NiCoP Core‣ayered Double Hydroxide Shell for Supercapacitors and Hydrogen Evolution. ChemElectroChem, 2021, 8, 2272-2281.	3.4	27
41	Constructing defect-rich V2O5 nanorods in catalytic membrane electrode for highly efficient oxidation of cyclohexane. Journal of Catalysis, 2020, 387, 154-162.	6.2	27
42	Facile preparation of polybenzimidazole membrane crosslinked with three-dimensional polyaniline for high-temperature proton exchange membrane. Journal of Power Sources, 2022, 528, 231218.	7.8	25
43	An electrocatalytic reactor for the high selectivity production of sodium 2,2,3,3-tetrafluoropropionate from 2,2,3,3-tetrafluoro-1-propanol. Electrochimica Acta, 2014, 123, 33-41.	5.2	24
44	Tubular electrocatalytic membrane reactor for alcohol oxidation: CFD simulation and experiment. Chinese Journal of Chemical Engineering, 2017, 25, 18-25.	3.5	23
45	Rationally designed NiMn LDH@NiCo ₂ O ₄ core–shell structures for high energy density supercapacitor and enzyme-free glucose sensor. Nanotechnology, 2021, 32, 505710.	2.6	23
46	Enhanced proton conductivity and stability of polybenzimidazole membranes at low phosphoric acid doping levels via constructing efficient proton transport pathways with ionic liquids and carbon nanotubes. Journal of Power Sources, 2022, 543, 231802.	7.8	23
47	Boosting photoelectrochemical water splitting by Au@Pt modified ZnO/CdS with synergy of Au-S bonds and surface plasmon resonance. Journal of Catalysis, 2022, 408, 196-205.	6.2	22
48	High performance of N, P co-doped metal-free carbon catalyst derived from ionic liquid for oxygen reduction reaction. Journal of Solid State Electrochemistry, 2018, 22, 519-525.	2.5	19
49	Electrochemical analysis and convection-enhanced mass transfer synergistic effect of MnO /Ti membrane electrode for alcohol oxidation. Chinese Journal of Chemical Engineering, 2019, 27, 150-156.	3.5	16
50	Biomass-derived carbon for ORR: pine needles as a single source for efficient carbon electrocatalyst. Journal of Applied Electrochemistry, 2020, 50, 1257-1267.	2.9	13
51	Controlled Synthesis of Copper-Doped Molybdenum Carbide Catalyst with Enhanced Activity and Stability for Hydrogen Evolution Reaction. Catalysis Letters, 2019, 149, 1368-1374.	2.6	11
52	Design of Au@Ag/BiOCl–OV photocatalyst and its application in selective alcohol oxidation driven by plasmonic carriers using O ₂ as the oxidant. CrystEngComm, 2020, 22, 6603-6611.	2.6	11
53	Polymerizable ionic liquid-derived carbon for oxygen reduction and evolution. Journal of Applied Electrochemistry, 2017, 47, 351-359.	2.9	9
54	Construction of Highly Efficient Photocatalyst with <scp>Coreâ€Shell</scp> Au@Ag/C@ <scp>SiO₂</scp> Hybrid Structure towards <scp>Visibleâ€Lightâ€Driven</scp> Photocatalytic Reduction. Chinese Journal of Chemistry, 2021, 39, 2865-2872.	4.9	8

#	Article	IF	CITATIONS
55	Enhanced flow electrochemistry for cyclohexane Conversion: From simulation to application. Journal of Catalysis, 2022, 410, 84-92.	6.2	8
56	Effect of Solvent on Conversion and Selectivity during the Selective Oxidation of Cyclohexane by Nano-V ₂ O ₅ /Ti Membrane Electrode. Journal of the Electrochemical Society, 2018, 165, H460-H465.	2.9	6
57	Electrocatalytic activity enhancement of N,P-doped carbon nanosheets derived from polymerizable ionic liquids. Journal of Applied Electrochemistry, 2021, 51, 669-679.	2.9	6
58	Enhancement of Ti ₃ C ₂ MXene on Au@Ag/TiO ₂ for the visible-light-driven photoreduction of nitroaromatics. CrystEngComm, 2022, 24, 657-666.	2.6	6
59	Engineering of a self-supported carbon electrode with 2D ultrathin heterostructures of NiCo LDH/NiCoS <i>via</i> a MOF-template for sensitive detection of glucose and H ₂ O ₂ . Materials Advances, 2022, 3, 6028-6036.	5.4	5
60	Tailoring the Morphology of Nano-γ-MnO ₂ Loaded Porous Ti Membrane Electrode for the High Efficiency Oxidation of Cyclohexane Using Double-Cathodic Electrodeposition. Journal of the Electrochemical Society, 2020, 167, 090553.	2.9	3
61	Efficient carbon-based electrocatalyst derived from biomass for hydrogen peroxide generation. Materials Today Communications, 2021, 26, 102051.	1.9	2
62	Persulfate promoted flow electrochemistry: Direct conversion of cyclohexane into adipic acid. Electrochimica Acta, 2022, 426, 140796.	5.2	2
63	Design and optimization of photocatalytic performance of 3D TiO ₂ microspheres through Au nanoparticles and rGO co-modification. Materials Research Express, 2019, 6, 075026.	1.6	1
64	Tailored ionic liquid for metal-free carbons toward oxygen reduction reaction. Carbon Trends, 2021, 3, 100038.	3.0	0
65	Freeâ€Standing and Highâ€Sensitive Electrodes with Hierarchical Nanostructures of Bimetallic Hydroxides M(OH) _x /Cu(OH) ₂ /CF (M=Ni, Co, Fe and Zn) for Glucose Detection. ChemistrySelect, 2021, 6, 3576-3583.	1.5	0
66	Controllable oxidation of cyclohexanone to produce sodium adipate in an electrochemical reactor with a Pt NPs/Ti membrane electrode. International Journal of Chemical Reactor Engineering, 2022, 20, 343-355.	1.1	0