

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2994845/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lithium zirconate coated LiNi0.8Co0.15Al0.05O2 as a high-performance electrode material for advanced fuel cells. Ceramics International, 2022, 48, 17076-17085.	4.8	12
2	Interfacial ionic transport in natural palygorskite-Na0.60CoO2 nanocomposite mineral materials. International Journal of Hydrogen Energy, 2022, 47, 24439-24451.	7.1	4
3	The interfacial ionic transport of two-dimensional ZnAl-mixed metal oxides nanocomposite. Journal of Alloys and Compounds, 2022, 921, 166118.	5.5	5
4	Tuning an ionic-electronic mixed conductor NdBa0.5Sr0.5Co1.5Fe0.5O5+δfor electrolyte functions of advanced fuel cells. International Journal of Hydrogen Energy, 2021, 46, 9847-9854.	7.1	7
5	Green synthesis of faujasite-La0.6Sr0.4Co0.2Fe0.8O3-δ mineral nanocomposite membrane for low temperature advanced fuel cells. International Journal of Hydrogen Energy, 2021, 46, 9826-9834.	7.1	13
6	Two-dimensional ZnS (propylamine) photocatalyst for efficient visible light photocatalytic H2 production. Catalysis Today, 2021, 374, 4-11.	4.4	15
7	<i>In situ</i> constructed oxygen-vacancy-rich MoO _{3â^'<i>x</i>} /porous g-C ₃ N ₄ heterojunction for synergistically enhanced photocatalytic H ₂ evolution. RSC Advances, 2021, 11, 31219-31225.	3.6	9
8	Developing cuprospinel CuFe2O4–ZnO semiconductor heterostructure as a proton conducting electrolyte for advanced fuel cells. International Journal of Hydrogen Energy, 2021, 46, 9927-9937.	7.1	33
9	Semiconductor-ionic properties and device performance of heterogeneous La-doped CeO2-ZnO nanocomposites. International Journal of Hydrogen Energy, 2021, 46, 9968-9975.	7.1	15
10	Nanoparticle exsolution in perovskite oxide and its sustainable electrochemical energy systems. Journal of Power Sources, 2021, 492, 229626.	7.8	17
11	Special issue on Perovskite materials. Journal of Materials Science: Materials in Electronics, 2021, 32, 12745-12745.	2.2	0
12	Layered double hydroxide photocatalysts for solar fuel production. Chinese Journal of Catalysis, 2021, 42, 1944-1975.	14.0	36
13	Enhanced Nanostructured ZnO-Based Photocatalyst Immobilized by Ink-Jet Printing for Methylene Blue Degradation. Jom, 2021, 73, 387-394.	1.9	1
14	Semiconductor Electrochemistry for Clean Energy Conversion and Storage. Electrochemical Energy Reviews, 2021, 4, 757-792.	25.5	77
15	Semiconductor Heterostructure SrTiO ₃ /CeO ₂ Electrolyte Membrane Fuel Cells. Journal of the Electrochemical Society, 2020, 167, 054504.	2.9	21
16	Advanced fuel cell based on semiconductor perovskite La–BaZrYO3-δ as an electrolyte material operating at low temperature 550°C. International Journal of Hydrogen Energy, 2020, 45, 27501-27509.	7.1	38
17	Intrinsic and extrinsic natures make changes on the ionic transportation - Response to: "Comments on Int J Hydrogen Energy 42 (2017) 17495–17503― International Journal of Hydrogen Energy, 2019, 44, 28056-28064.	7.1	6
18	Atomically thin two-dimensional ZnSe/ZnSe(ea) _x van der Waals nanojunctions for synergistically enhanced visible light photocatalytic H ₂ evolution. Nanoscale, 2019, 11, 17718-17724.	5.6	33

Yan Wu

#	Article	IF	CITATIONS
19	Proton Shuttles in CeO ₂ /CeO _{2â^'î´} Core–Shell Structure. ACS Energy Letters, 2019, 4, 2601-2607.	17.4	160
20	Fast ion channels for crab shell-based electrolyte fuel cells. International Journal of Hydrogen Energy, 2019, 44, 15370-15376.	7.1	11
21	3D printed Sm-doped ceria composite electrolyte membrane for low temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2019, 44, 13843-13851.	7.1	23
22	The composite electrolyte with an insulation Sm2O3 and semiconductor NiO for advanced fuel cells. International Journal of Hydrogen Energy, 2018, 43, 12739-12747.	7.1	34
23	Proton Conduction and Fuel Cell Using the CuFe-Oxide Mineral Composite Based on CuFeO ₂ Structure. ACS Applied Energy Materials, 2018, 1, 580-588.	5.1	28
24	The synthesis of ZnO/SrTiO3 composite for high-efficiency photocatalytic hydrogen and electricity conversion. International Journal of Hydrogen Energy, 2018, 43, 12627-12636.	7.1	45
25	Plasma sprayed coatings for low-temperature SOFC and high temperature effects on Lix(Ni,Co)yO2 catalyst layers. International Journal of Hydrogen Energy, 2018, 43, 12782-12788.	7.1	7
26	The heterogeneous electrolyte of CuFeO2 nano-flakes composited with flower-shaped ZnO for advanced solid oxide fuel cells. International Journal of Hydrogen Energy, 2018, 43, 12789-12796.	7.1	24
27	Enhanced solar light photocatalytic properties of ZnO nanocrystals by Mg-doping via polyacrylamide polymer method. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 356, 681-688.	3.9	31
28	Double Z-scheme ZnO/ZnS/g-C3N4 ternary structure for efficient photocatalytic H2 production. Applied Surface Science, 2018, 430, 293-300.	6.1	185
29	Fabrication of CeO2 nanorods for enhanced solar photocatalysts. International Journal of Hydrogen Energy, 2018, 43, 5275-5282.	7.1	51
30	Natural hematite ore composited with ZnO nanoneedles for energy applications. Composites Part B: Engineering, 2018, 137, 178-183.	12.0	29
31	Electrical properties of nanocube CeO2 in advanced solid oxide fuel cells. International Journal of Hydrogen Energy, 2018, 43, 12909-12916.	7.1	87
32	Magnetically separable photocatalyst of direct Z-scheme g-C3N4 nanosheets/natural hematite ore hybrids. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 336, 156-163.	3.9	29
33	Electrochemical properties and catalyst functions of natural CuFe oxide mineral–LZSDC composite electrolyte. International Journal of Hydrogen Energy, 2017, 42, 22185-22191.	7.1	22
34	Natural CuFe2O4 mineral for solid oxide fuel cells. International Journal of Hydrogen Energy, 2017, 42, 17514-17521.	7.1	27
35	La0.1SrxCa0.9â^'xMnO3â^'Î^Sm0.2Ce0.8O1.9 composite material for novel low temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2017, 42, 17552-17558.	7.1	27
36	Solution processed room temperature ferromagnetic MgO thin films printed by inkjet technique. Materials Letters, 2017, 196, 388-391.	2.6	11

Yan Wu

#	Article	IF	CITATIONS
37	Facile synthesis of ZnO nanoparticles for the photocatalytic degradation of methylene blue. Journal of Sol-Gel Science and Technology, 2017, 82, 167-176.	2.4	27
38	Standardized Procedures Important for Improving Single-Component Ceramic Fuel Cell Technology. ACS Energy Letters, 2017, 2, 2752-2755.	17.4	30
39	Enhanced ionic conductivity of yttria-stabilized ZrO2 with natural CuFe-oxide mineral heterogeneous composite for low temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2017, 42, 17495-17503.	7.1	37
40	Photocatalytic degradation of Brilliant Green dye using CdSe quantum dots hybridized with graphene oxide under sunlight irradiation. Chinese Journal of Catalysis, 2017, 38, 2150-2159.	14.0	75
41	Natural Hematite for Nextâ€Generation Solid Oxide Fuel Cells. Advanced Functional Materials, 2016, 26, 938-942.	14.9	85
42	Natural Mineral-Based Solid Oxide Fuel Cell with Heterogeneous Nanocomposite Derived from Hematite and Rare-Earth Minerals. ACS Applied Materials & Interfaces, 2016, 8, 20748-20755.	8.0	59
43	Photocatalytic properties of Ag-modified MgZnO/RGO composites. Materials Research Innovations, 2015, 19, S8-318-S8-321.	2.3	4
44	Magnetic Separation and Magnetic Properties of Low-Grade Manganese Carbonate Ore. Jom, 2015, 67, 361-368.	1.9	29
45	Biomass Reduction Roasting-Magnetic Separation of Low Grade Goethite. Materials Science Forum, 2015, 814, 235-240.	0.3	6
46	Photocatalytic enhancement of Mg-doped ZnO nanocrystals hybridized with reduced graphene oxide sheets. Progress in Natural Science: Materials International, 2014, 24, 6-12.	4.4	54
47	Structure and optical properties of Mgâ€doped ZnO nanoparticles by polyacrylamide method. Crystal Research and Technology, 2013, 48, 145-152.	1.3	29
48	In-situ preparation of metal oxide thin films by inkjet printing acetates solutions. Materials Research Society Symposia Proceedings, 2013, 1547, 13-20.	0.1	5
49	Room temperature ferromagnetism of Fe-doped ZnO and MgO thin films prepared by ink-jet printing. Materials Research Society Symposia Proceedings, 2012, 1394, 13.	0.1	3
50	Rapid and direct magnetization of goethite ore roasted by biomass fuel. Separation and Purification Technology, 2012, 94, 34-38.	7.9	61
51	Ultraviolet light sensitive Inâ€doped ZnO thin film field effect transistor printed by inkjet technique. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 206-209.	1.8	46
52	†În-situ' Solution Processed Room Temperature Ferromagnetic MgO Thin Films Printed by Inkjet Technique. Materials Research Society Symposia Proceedings, 2011, 1292, 105.	0.1	5
53	Room Temperature Ferromagnetism and Fast Ultraviolet Photoresponse of Inkjet-Printed Mn-Doped ZnO Thin Films. IEEE Transactions on Magnetics, 2010, 46, 2152-2155.	2.1	23
54	Room temperature ferromagnetism in pristine MgO thin films. Applied Physics Letters, 2010, 96, .	3.3	105

Yan Wu

#	Article	IF	CITATIONS
55	Enhanced Photoresponse of Inkjet-Printed ZnO Thin Films Capped with CdS Nanoparticles. Journal of Physical Chemistry Letters, 2010, 1, 89-92.	4.6	51
56	Ultraviolet Photoresponse of Pure and Al doped ZnO Polycrystalline Thin Films by Inkjet Printing. Materials Research Society Symposia Proceedings, 2009, 1161, 3221.	0.1	9
57	Electrochemical properties of intermediate-temperature SOFCs based on proton conducting Sm-doped BaCeO3 electrolyte thin film. Solid State Ionics, 2006, 177, 389-393.	2.7	225
58	The Reduction Mechanism of Biomass Roasting of Goethite Ores. Advanced Materials Research, 0, 560-561, 441-446.	0.3	4
59	Magnetic Properties of Low Grade Manganese Carbonate Ore. Applied Mechanics and Materials, 0, 664, 38-42.	0.2	1
60	Enhanced Photocatalytic Properties of Ag-Modified Mg-Doped ZnO Nanocrystals Hybridized with Reduced Graphene Oxide Sheets. Materials Science Forum, 0, 814, 161-166.	0.3	2