Mikhail Y Shalaginov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2994456/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deep Convolutional Neural Networks to Predict Mutual Coupling Effects in Metasurfaces. Advanced Optical Materials, 2022, 10, 2102113.	7.3	28
2	Dielectric spectroscopic investigation of reversible photo-induced changes in amorphous Ge ₂ Sb ₂ Se ₅ thin films. Journal of Applied Physics, 2022, 131, 075102.	2.5	1
3	Understanding wide field-of-view metalenses. , 2022, , .		0
4	Phase change materials: the 'silicon' for analog photonic computing?. , 2022, , .		0
5	Reconfigurable Parfocal Zoom Metalens. Advanced Optical Materials, 2022, 10, .	7.3	18
6	Multiâ€Level Electroâ€Thermal Switching of Optical Phaseâ€Change Materials Using Graphene. Advanced Photonics Research, 2021, 2, 2000034.	3.6	75
7	Multifunctional Metasurface Design with a Generative Adversarial Network. Advanced Optical Materials, 2021, 9, 2001433.	7.3	78
8	Nonlinear Midâ€Infrared Metasurface based on a Phaseâ€Change Material. Laser and Photonics Reviews, 2021, 15, 2000373.	8.7	25
9	Reconfigurable all-dielectric metalens with diffraction-limited performance. Nature Communications, 2021, 12, 1225.	12.8	221
10	Multifunctional Metasurface Design with a Generative Adversarial Network (Advanced Optical) Tj ETQq0 0 0 rgB	Г /Qyerloci 7.3	۶ 10 Tf 50 38 1
11	Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nature Nanotechnology, 2021, 16, 661-666.	31.5	298
12	Large-area optical metasurface fabrication using nanostencil lithography. Optics Letters, 2021, 46, 2324.	3.3	8

13	Myths and truths about optical phase change materials: A perspective. Applied Physics Letters, 2021, 118,	3.3	76
14	Transient Tap Couplers for Wafer-Level Photonic Testing Based on Optical Phase Change Materials. ACS Photonics, 2021, 8, 1903-1908.	6.6	24
15	Electrically-switchable foundry-processed phase change photonic devices. , 2021, , .		5
16	A Deep Learning Approach to Explore the Mutual Coupling Effects in Metasurfaces. , 2021, , .		1

17	Wide Field-of-view Achromatic Metalenses. , 2021, , .		1
18	A Transferrable, Adaptable, Free-Standing, and Water-Resistant Hyperbolic Metamaterial. ACS Applied Materials & Interfaces, 2021, 13, 49224-49231.	8.0	3

MIKHAIL Y SHALAGINOV

#	Article	IF	CITATIONS
19	Design of broadband and wide field-of-view metalenses. Optics Letters, 2021, 46, 5735-5738.	3.3	18
20	Phase change reconfigurable nanophotonics on a foundry-processed SOI platform. , 2021, , .		0
21	Ge2Sb2Se4Te1 Metasurface for Enhancing Third-Harmonic Generation in the Mid-Infrared. , 2021, , .		0
22	Electrically Reconfigurable Nonvolatile Metasurface based on Phase Change Materials. , 2021, , .		0
23	Ge2Sb2Se5 Glass as High-capacity Promising Lithium-ion Battery Anode. Nano Energy, 2020, 68, 104326.	16.0	38
24	On-Chip Single-Layer Integration of Diamond Spins with Microwave and Plasmonic Channels. ACS Photonics, 2020, 7, 2018-2026.	6.6	9
25	Single-Element Diffraction-Limited Fisheye Metalens. Nano Letters, 2020, 20, 7429-7437.	9.1	104
26	Enhanced laser action from smart fabrics made with rollable hyperbolic metamaterials. Npj Flexible Electronics, 2020, 4, .	10.7	8
27	Broadband enhancement of on-chip single-photon extraction via tilted hyperbolic metamaterials. Applied Physics Reviews, 2020, 7, 021403.	11.3	36
28	All-dielectric Metasurface Designs Enabled by Deep Neural Networks. , 2020, , .		7
29	Deep learning modeling approach for metasurfaces with high degrees of freedom. Optics Express, 2020, 28, 31932.	3.4	73
30	Design for quality: reconfigurable flat optics based on active metasurfaces. Nanophotonics, 2020, 9, 3505-3534.	6.0	87
31	Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nature Communications, 2019, 10, 4279.	12.8	349
32	A Deep Learning Approach for Objective-Driven All-Dielectric Metasurface Design. ACS Photonics, 2019, 6, 3196-3207.	6.6	212
33	Understanding aging in chalcogenide glass thin films using precision resonant cavity refractometry. Optical Materials Express, 2019, 9, 2252.	3.0	12
34	Single-layer Planar Metasurface Lens with >170 \hat{A}^{o} Field of View. , 2019, , .		3
35	Reshaping light: reconfigurable photonics enabled by broadband low-loss optical phase change materials. , 2019, , .		3
36	Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics. Nature Communications, 2018, 9, 1481.	12.8	126

MIKHAIL Y SHALAGINOV

#	Article	IF	CITATIONS
37	Hybrid Plasmonic Bullseye Antennas for Efficient Photon Collection. ACS Photonics, 2018, 5, 692-698.	6.6	59
38	Ultrabright Room-Temperature Sub-Nanosecond Emission from Single Nitrogen-Vacancy Centers Coupled to Nanopatch Antennas. Nano Letters, 2018, 18, 4837-4844.	9.1	121
39	Lasing Action with Gold Nanorod Hyperbolic Metamaterials. ACS Photonics, 2017, 4, 674-680.	6.6	49
40	Superconducting detector for visible and near-infrared quantum emitters [Invited]. Optical Materials Express, 2017, 7, 513.	3.0	17
41	Massive Parallel Positioning of Nanodiamonds on Nanophotonic Structures. , 2017, , .		0
42	Subwavelength optics with hyperbolic metamaterials: Waveguides, scattering, and optical topological transitions. , 2016, , .		0
43	Long-range plasmonic waveguides with hyperbolic cladding. Optics Express, 2015, 23, 31109.	3.4	48
44	Enhancement of singleâ€ʻphoton emission from nitrogenâ€ʻvacancy centers with TiN/(Al,Sc)N hyperbolic metamaterial. Laser and Photonics Reviews, 2015, 9, 120-127.	8.7	93
45	Multilayer Cladding with Hyperbolic Dispersion for Plasmonic Waveguides. , 2015, , .		0
46	Finite-width plasmonic waveguides with hyperbolic multilayer cladding. Optics Express, 2015, 23, 9681.	3.4	58
47	Effect of photonic density of states on spin-flip induced fluorescence contrast in diamond nitrogen-vacancy center ensembles (Presentation Recording). Proceedings of SPIE, 2015, , .	0.8	0
48	Nitrogen-vacancy single-photon emission enhanced with nanophotonic structures (Presentation) Tj ETQq0 0 0 r	gBT /Over	lock 10 Tf 50
49	Effect of a hyperbolic metamaterial on radiation patterns of a single-photon source. , 2015, , .		Ο
50	Enhanced Multi-Photon Emission from Single NV Center Coupled to Graphene by Laser-Shaping. , 2015, ,		0
51	Single-photon source based on NV center in nanodiamond coupled to TiN-based hyperbolic metamaterial. , 2014, , .		0
52	Plasmonic waveguides cladded by hyperbolic metamaterials. Optics Letters, 2014, 39, 4663.	3.3	56
53	First-Principles Calculations of Structural, Elastic, Electronic, and Optical Properties of Perovskite-type KMgH ₃ Crystals: Novel Hydrogen Storage Material. Journal of Physical	2.6	52

Chemistry B, 2011, 115, 2836-2841.