Patrick Hemberger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2994296/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	A new double imaging velocity focusing coincidence experiment: <i>i</i> 2PEPICO. Review of Scientific Instruments, 2012, 83, 083105.	1.3	150
2	Understanding the mechanism of catalytic fast pyrolysis by unveiling reactive intermediates in heterogeneous catalysis. Nature Communications, 2017, 8, 15946.	12.8	141
3	Mechanism of Fast Pyrolysis of Lignin: Studying Model Compounds. Journal of Physical Chemistry B, 2014, 118, 8524-8531.	2.6	125
4	CRF-PEPICO: Double velocity map imaging photoelectron photoion coincidence spectroscopy for reaction kinetics studies. Journal of Chemical Physics, 2017, 147, 013944.	3.0	122
5	Synthesis of DOPO-Based Phosphonamidates and their Thermal Properties. Industrial & Engineering Chemistry Research, 2014, 53, 2889-2896.	3.7	106
6	Elucidating the Thermal Decomposition of Dimethyl Methylphosphonate by Vacuum Ultraviolet (VUV) Photoionization: Pathways to the PO Radical, a Key Species in Flameâ€Retardant Mechanisms. Chemistry - A European Journal, 2015, 21, 1073-1080.	3.3	102
7	<i>In situ</i> flame chemistry tracing by imaging photoelectron photoion coincidence spectroscopy. Review of Scientific Instruments, 2014, 85, 025101.	1.3	94
8	Mass-Resolved Isomer-Selective Chemical Analysis with Imaging Photoelectron Photoion Coincidence Spectroscopy. Journal of Physical Chemistry Letters, 2013, 4, 2948-2952.	4.6	93
9	Threshold Photoelectron Spectroscopy of the Methyl Radical Isotopomers, CH3, CH2D, CHD2 and CD3: Synergy between VUV Synchrotron Radiation Experiments and Explicitly Correlated Coupled Cluster Calculations. Journal of Physical Chemistry A, 2010, 114, 4818-4830.	2.5	88
10	New analytical tools for advanced mechanistic studies in catalysis: photoionization and photoelectron photoion coincidence spectroscopy. Catalysis Science and Technology, 2020, 10, 1975-1990.	4.1	67
11	Electron ionization, photoionization and photoelectron/photoion coincidence spectroscopy in mass-spectrometric investigations of a low-pressure ethylene/oxygen flame. Proceedings of the Combustion Institute, 2015, 35, 779-786.	3.9	58
12	lsomer-Specific Product Detection of Gas-Phase Xylyl Radical Rearrangement and Decomposition Using VUV Synchrotron Photoionization. Journal of Physical Chemistry A, 2014, 118, 3593-3604.	2.5	57
13	Direct Observation of <i>para</i> -Xylylene as the Decomposition Product of the <i>meta</i> -Xylyl Radical Using VUV Synchrotron Radiation. Journal of Physical Chemistry Letters, 2013, 4, 2546-2550.	4.6	56
14	Photoionization of Three Isomers of the C ₉ H ₇ Radical. Journal of Physical Chemistry A, 2010, 114, 4698-4703.	2.5	55
15	Photoelectron Photoion Coincidence Spectroscopy Provides Mechanistic Insights in Fuel Synthesis and Conversion. Energy & Fuels, 2021, 35, 16265-16302.	5.1	55
16	Photoionization of C ₇ H ₆ and C ₇ H ₅ : Observation of the Fulvenallenyl Radical. ChemPhysChem, 2011, 12, 1795-1797.	2.1	52
17	Dissociative Photoionization of Quinoline and Isoquinoline. Journal of Physical Chemistry A, 2015, 119, 1127-1136.	2.5	49
18	The thermal decomposition of the benzyl radical in a heated micro-reactor. I. Experimental findings. Journal of Chemical Physics, 2015, 142, 044307.	3.0	46

#	Article	IF	CITATIONS
19	Methylbismuth: an organometallic bismuthinidene biradical. Chemical Science, 2020, 11, 7562-7568.	7.4	46
20	lsomer-dependent catalytic pyrolysis mechanism of the lignin model compounds catechol, resorcinol and hydroquinone. Chemical Science, 2021, 12, 3161-3169.	7.4	45
21	Insights in m-xylene decomposition under fuel-rich conditions by imaging photoelectron photoion coincidence spectroscopy. Proceedings of the Combustion Institute, 2017, 36, 1223-1232.	3.9	42
22	Evidence of radical chemistry in catalytic methane oxybromination. Nature Catalysis, 2018, 1, 363-370.	34.4	41
23	Photoionization of Propargyl and Bromopropargyl Radicals: A Threshold Photoelectron Spectroscopic Study. Journal of Physical Chemistry A, 2011, 115, 2225-2230.	2.5	40
24	Pyrolysis of fulvenallene (C7H6) and fulvenallenyl (C7H5): Theoretical kinetics and experimental product detection. Chemical Physics Letters, 2011, 517, 144-148.	2.6	40
25	Radical Thermometers, Thermochemistry, and Photoelectron Spectra: A Photoelectron Photoion Coincidence Spectroscopy Study of the Methyl Peroxy Radical. Journal of Physical Chemistry Letters, 2018, 9, 534-539.	4.6	39
26	Breaking through the false coincidence barrier in electron–ion coincidence experiments. Journal of Chemical Physics, 2016, 145, 164202.	3.0	36
27	Off the Beaten Path: Almost Clean Formation of Indene from the <i>ortho</i> -Benzyne + Allyl Reaction. Journal of Physical Chemistry Letters, 2020, 11, 2859-2863.	4.6	36
28	Intramolecular CN Bond Activation and Ringâ€Expansion Reactions of Nâ€Heterocyclic Carbenes. Chemistry - A European Journal, 2015, 21, 1434-1438.	3.3	35
29	Are the three hydroxyphenyl radical isomers created equal? – The role of the phenoxy radical –. Physical Chemistry Chemical Physics, 2015, 17, 30076-30083.	2.8	35
30	Photoelectron Spectrum and Energetics of the <i>meta</i> -Xylylene Diradical. Journal of the American Chemical Society, 2017, 139, 14348-14351.	13.7	34
31	Unimolecular Reaction Mechanism of an Imidazolinâ€2â€ylidene: An iPEPICO Study on the Complex Dissociation of an Arduengoâ€Type Carbene. Chemistry - A European Journal, 2013, 19, 7090-7099.	3.3	33
32	Charged particle velocity map image reconstruction with one-dimensional projections of spherical functions. Review of Scientific Instruments, 2013, 84, 033101.	1.3	32
33	Threshold photoelectron spectrum of the benzyl radical. Molecular Physics, 2015, 113, 2217-2227.	1.7	32
34	Elucidation of radical- and oxygenate-driven paths in zeolite-catalysed conversion of methanol and methyl chloride to hydrocarbons. Nature Catalysis, 2022, 5, 605-614.	34.4	32
35	Isomer‣elective Generation and Spectroscopic Characterization of Picolyl Radicals. Angewandte Chemie - International Edition, 2017, 56, 8000-8003.	13.8	30
36	Dissociative ionisation of adamantane: a combined theoretical and experimental study. Physical Chemistry Chemical Physics, 2018, 20, 5399-5406.	2.8	30

#	Article	IF	CITATIONS
37	Halogenâ€Dependent Surface Confinement Governs Selective Alkane Functionalization to Olefins. Angewandte Chemie - International Edition, 2019, 58, 5877-5881.	13.8	30
38	Nitrogen matters: the difference between PANH and PAH formation. Physical Chemistry Chemical Physics, 2018, 20, 29910-29917.	2.8	29
39	Selective Methane Functionalization via Oxyhalogenation over Supported Noble Metal Nanoparticles. ACS Catalysis, 2019, 9, 1710-1725.	11.2	29
40	Direct Evidence on the Mechanism of Methane Conversion under Nonâ€oxidative Conditions over Ironâ€modified Silica: The Role of Propargyl Radicals Unveiled. Angewandte Chemie - International Edition, 2021, 60, 24002-24007.	13.8	29
41	Flame structure of a low-pressure laminar premixed and lightly sooting acetylene flame and the effect of ethanol addition. Proceedings of the Combustion Institute, 2015, 35, 803-811.	3.9	28
42	Threshold Photoelectron Spectra of Combustion Relevant C ₄ H ₅ and C ₄ H ₇ Isomers. Journal of Physical Chemistry A, 2015, 119, 3995-4000.	2.5	28
43	Kinetics of the a-C ₃ H ₅ + O ₂ reaction, investigated by photoionization using synchrotron radiation. Physical Chemistry Chemical Physics, 2018, 20, 10721-10731.	2.8	28
44	Hydrogen abstraction ratios: A systematic iPEPICO spectroscopic investigation in laminar flames. Combustion and Flame, 2018, 191, 343-352.	5.2	27
45	Probing Phosphorus Nitride (P≡N) and Other Elusive Species Formed upon Pyrolysis of Dimethyl Phosphoramidate. Chemistry - A European Journal, 2017, 23, 5595-5601.	3.3	26
46	Continuous Pyrolysis Microreactors: Hot Sources with Little Cooling? New Insights Utilizing Cation Velocity Map Imaging and Threshold Photoelectron Spectroscopy. Journal of Physical Chemistry A, 2022, 126, 2196-2210.	2.5	26
47	Threshold Photoelectron Spectroscopy of Cyclopropenylidene, Chlorocyclopropenylidene, and Their Deuterated Isotopomeresâ€. Journal of Physical Chemistry A, 2010, 114, 11269-11276.	2.5	25
48	H2CN+ and H2CNH+: New insight into the structure and dynamics from mass-selected threshold photoelectron spectra. Journal of Chemical Physics, 2013, 138, 214310.	3.0	25
49	Vibrational and electronic excitations in fluorinated ethene cations from the ground up. Journal of Chemical Physics, 2013, 138, 124301.	3.0	25
50	Chemicals from Lignin by Catalytic Fast Pyrolysis, from Product Control to Reaction Mechanism. Chimia, 2015, 69, 597.	0.6	25
51	Flame structure of laminar premixed anisole flames investigated by photoionization mass spectrometry and photoelectron spectroscopy. Proceedings of the Combustion Institute, 2019, 37, 1579-1587.	3.9	25
52	On the formation of cyclopentadiene in the C ₃ H ₅ Ë™ + C ₂ H ₂ reaction. Physical Chemistry Chemical Physics, 2015, 17, 20508-20514.	2.8	24
53	Self-Reaction of <i>ortho</i> -Benzyne at High Temperatures Investigated by Infrared and Photoelectron Spectroscopy. Journal of Physical Chemistry A, 2018, 122, 9563-9571.	2.5	24
54	Hydrogen migration as a potential driving force in the thermal decomposition of dimethoxymethane: New insights from pyrolysis imaging photoelectron photoion coincidence spectroscopy and computations. Combustion and Flame, 2020, 222, 123-132.	5.2	24

#	Article	IF	CITATIONS
55	lodide-Coordinated Single-Site Pd Catalysts for Alkyne Dialkoxycarbonylation. ACS Catalysis, 2021, 11, 9242-9251.	11.2	23
56	Photoionization and Pyrolysis of a 1,4â€Azaborinine: Retroâ€Hydroboration in the Cation and Identification of Novel Organoboron Ring Systems. Chemistry - A European Journal, 2014, 20, 9683-9692.	3.3	22
57	Imaging breakdown diagrams for bromobutyne isomers with photoelectron–photoion coincidence. Physical Chemistry Chemical Physics, 2014, 16, 505-515.	2.8	22
58	Dissociative Ionization Mechanism and Appearance Energies in Adipic Acid Revealed by Imaging Photoelectron Photoion Coincidence, Selective Deuteration, and Calculations. Journal of Physical Chemistry A, 2016, 120, 3397-3405.	2.5	22
59	Photodissociation dynamics of the <i>ortho</i> - and <i>para</i> -xylyl radicals. Journal of Chemical Physics, 2017, 147, 084303.	3.0	22
60	To Boldly Look Where No One Has Looked Before: Identifying the Primary Photoproducts of Acetylacetone. Journal of Physical Chemistry A, 2019, 123, 5472-5490.	2.5	22
61	Gas-phase aluminium acetylacetonate decomposition: revision of the current mechanism by VUV synchrotron radiation. Physical Chemistry Chemical Physics, 2021, 23, 15059-15075.	2.8	22
62	The role of H2 on the stability of the single-metal-site Ir1/AC catalyst for heterogeneous methanol carbonylation. Journal of Catalysis, 2020, 381, 193-203.	6.2	21
63	The Threshold Photoelectron Spectrum of Fulvenone: A Reactive Ketene Derivative in Lignin Valorization. ChemPhysChem, 2020, 21, 2217-2222.	2.1	21
64	On the absolute photoionization cross section and dissociative photoionization of cyclopropenylidene. Physical Chemistry Chemical Physics, 2016, 18, 9240-9247.	2.8	20
65	Thermal Decompositions of the Lignin Model Compounds: Salicylaldehyde and Catechol. Journal of Physical Chemistry A, 2018, 122, 5911-5924.	2.5	20
66	Operando Photoelectron Photoion Coincidence Spectroscopy Unravels Mechanistic Fingerprints of Propane Activation by Catalytic Oxyhalogenation. Journal of Physical Chemistry Letters, 2020, 11, 856-863.	4.6	20
67	The fate of the OH radical in molecular beam sampling experiments. Proceedings of the Combustion Institute, 2019, 37, 1563-1570.	3.9	19
68	Dissociative Photoionization of Diethyl Ether. Journal of Physical Chemistry A, 2015, 119, 10654-10663.	2.5	18
69	Pyrolysis of 3-Methoxypyridine. Detection and Characterization of the Pyrrolyl Radical by Threshold Photoelectron Spectroscopy. Journal of Physical Chemistry A, 2016, 120, 4702-4710.	2.5	18
70	Dissociative Ionization and Thermal Decomposition of Cyclopentanone. Chemistry - A European Journal, 2017, 23, 13131-13140.	3.3	18
71	Pentadiynylidene and Its Methyl-Substituted Derivates: Threshold Photoelectron Spectroscopy of R ₁ -C ₅ -R ₂ Triplet Carbon Chains. Journal of Physical Chemistry A, 2019, 123, 2008-2017.	2.5	18
72	A pass too far: dissociation of internal energy selected paracyclophane cations, theory and experiment. Physical Chemistry Chemical Physics, 2012, 14, 11920.	2.8	17

#	Article	IF	CITATIONS
73	Photoionisation of the tropyl radical. Beilstein Journal of Organic Chemistry, 2013, 9, 681-688.	2.2	17
74	The Underlying Chemistry to the Formation of PO ₂ Radicals from Organophosphorus Compounds: A Missing Puzzle Piece in Flame Chemistry. Chemistry - A European Journal, 2020, 26, 10795-10800.	3.3	17
75	Ultrafast Dynamics of Isolated Fluorenone. Journal of Physical Chemistry A, 2011, 115, 14249-14253.	2.5	16
76	Femtosecond dynamics of cyclopropenylidene, c-C ₃ H ₂ . Physical Chemistry Chemical Physics, 2012, 14, 6173-6178.	2.8	16
77	The ionisation energy of cyclopentadienone: a photoelectron–photoion coincidence study. Molecular Physics, 2015, 113, 2350-2358.	1.7	16
78	The ortho-benzyne cation is not planar. Physical Chemistry Chemical Physics, 2018, 20, 3988-3996.	2.8	16
79	Valence Photoionization of Thymine: Ionization Energies, Vibrational Structure, and Fragmentation Pathways from the Slow to the Ultrafast. Chemistry - A European Journal, 2019, 25, 14192-14204.	3.3	16
80	The B 1B1 State of Cyclopropenylidene, c-C3H2. Journal of Physical Chemistry Letters, 2010, 1, 228-231.	4.6	15
81	Metamorphic <i>meta</i> isomer: carbon dioxide and ketenes are formed <i>via</i> retro-Diels–Alder reactions in the decomposition of <i>meta</i> -benzenediol. Physical Chemistry Chemical Physics, 2019, 21, 19480-19487.	2.8	15
82	The ionization energy of the vinyl radical: a Mexican standoff with a happy ending. Physical Chemistry Chemical Physics, 2019, 21, 22238-22247.	2.8	15
83	Five Birds with One Stone: Photoelectron Photoion Coincidence Unveils Rich Phthalide Pyrolysis Chemistry. Journal of Physical Chemistry A, 2021, 125, 1738-1746.	2.5	15
84	Threshold Photoionization of Fluorenyl, Benzhydryl, Diphenylmethylene, and Their Dimers. Journal of Physical Chemistry A, 2013, 117, 5260-5268.	2.5	14
85	The vacuum-ultraviolet photoelectron spectra of CH2F2 and CH2Cl2 revisited. Journal of Molecular Spectroscopy, 2015, 315, 172-183.	1.2	14
86	A photoionization study of 2-propyl and t-butyl radicals. Journal of Analytical and Applied Pyrolysis, 2017, 124, 454-460.	5.5	14
87	Dissociative Photoionization of Dimethyl Carbonate: The More It Is Cut, the Bigger the Fragment Ion. Journal of Physical Chemistry A, 2017, 121, 2748-2759.	2.5	14
88	The photoionisation of two phenylcarbenes and their diazirine precursors investigated using synchrotron radiation. Physical Chemistry Chemical Physics, 2009, 11, 5384.	2.8	13
89	Dissociative Photoionization and Threshold Photoelectron Spectra of Polycyclic Aromatic Hydrocarbon Fragments: An Imaging Photoelectron Photoion Coincidence (iPEPICO) Study of Four Substituted Benzene Radical Cations. Journal of Physical Chemistry A, 2014, 118, 11226-11234.	2.5	13
90	Coincident velocity map image reconstruction illustrated by the single-photon valence photoionisation of CF ₃ SF ₅ . Physical Chemistry Chemical Physics, 2017, 19, 30173-30180.	2.8	13

#	Article	IF	CITATIONS
91	Preparation and regeneration of supported single-Ir-site catalysts by nanoparticle dispersion via CO and nascent I radicals. Journal of Catalysis, 2020, 382, 347-357.	6.2	13
92	Ultrafast imaging of electronic relaxation in o-xylene: a new competing intersystem crossing channel. Physical Chemistry Chemical Physics, 2013, 15, 18101.	2.8	12
93	Assignment of high-lying bending mode levels in the threshold photoelectron spectrum of NH ₂ : a comparison between pyrolysis and fluorine-atom abstraction radical sources. Physical Chemistry Chemical Physics, 2015, 17, 19507-19514.	2.8	12
94	A guinea pig for conformer selectivity and mechanistic insights into dissociative ionization by photoelectron photoion coincidence: fluorocyclohexane. Physical Chemistry Chemical Physics, 2020, 22, 2351-2360.	2.8	12
95	Observation of lowâ€ŧemperature chemistry products in laminar premixed lowâ€pressure flames by molecularâ€beam mass spectrometry. International Journal of Chemical Kinetics, 2021, 53, 1063-1081.	1.6	12
96	A robust link between the thermochemistry of urea and isocyanic acid by dissociative photoionization. Journal of Chemical Thermodynamics, 2013, 58, 292-299.	2.0	10
97	How Inter―and Intramolecular Reactions Dominate the Formation of Products in Lignin Pyrolysis. Chemistry - A European Journal, 2017, 23, 8658-8668.	3.3	10
98	Investigation of the combustion chemistry in laminar, low-pressure oxymethylene ether flames (OME0–4). Combustion and Flame, 2022, 243, 112060.	5.2	10
99	Decomposition of Diazomeldrum's Acid: A Threshold Photoelectron Spectroscopy Study. Journal of Physical Chemistry A, 2014, 118, 11235-11243.	2.5	9
100	Threshold photoelectron spectroscopy of unstable N-containing compounds: Resolution of ΔK subbands in HNCO+ and vibrational resolution in NCO+. Journal of Chemical Physics, 2015, 142, 184306.	3.0	9
101	Low-Energy Photoelectron Spectrum and Dissociative Photoionization of the Smallest Amides: Formamide and Acetamide. Journal of Physical Chemistry A, 2019, 123, 272-283.	2.5	9
102	Conformers, electronic states, and diabolical conical intersections in the valence photoelectron spectroscopy of halocyclohexanes. Journal of Chemical Physics, 2020, 153, 054305.	3.0	9
103	A pressurized flow reactor combustion experiment interfaced with synchrotron double imaging photoelectron photoion coincidence spectroscopy. Review of Scientific Instruments, 2020, 91, 045115.	1.3	9
104	Kinetics of 1- and 2-methylallyl + O ₂ reaction, investigated by photoionisation using synchrotron radiation. Physical Chemistry Chemical Physics, 2021, 23, 1539-1549.	2.8	9
105	Valence Photoionization and Energetics of Vanillin, a Sustainable Feedstock Candidate. Journal of Physical Chemistry A, 2021, 125, 3327-3340.	2.5	9
106	Oxidation of oxymethylene ether (OME0â^'5): An experimental systematic study by mass spectrometry and photoelectron photoion coincidence spectroscopy. Fuel, 2022, 313, 122650.	6.4	9
107	Improved Ionization Energies for the Two Isomers of Phenylpropargyl Radical. ChemPhysChem, 2014, 15, 3489-3492.	2.1	8
108	Bifurcated dissociative photoionization mechanism of acetic acid anhydride revealed by imaging photoelectron photoion coincidence spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 25161-25168.	2.8	8

#	Article	IF	CITATIONS
109	Photoelectron Photoion Coincidence Spectroscopy to Unveil Reaction Mechanisms by Isomer-selective Detection of Elusive Molecules: From Combustion to Catalysis. Chimia, 2018, 72, 227.	0.6	8
110	Product detection study of the gas-phase oxidation of methylphenyl radicals using synchrotron photoionisation mass spectrometry. Physical Chemistry Chemical Physics, 2019, 21, 17939-17949.	2.8	8
111	Halogenbedingte OberflÄ g henbindung steuert die selektive Alkanfunktionalisierung zu Olefinen. Angewandte Chemie, 2019, 131, 5935-5940.	2.0	8
112	Threshold photoionization shows no sign of nitryl hydride in methane oxidation with nitric oxide. Physical Chemistry Chemical Physics, 2021, 23, 1265-1272.	2.8	8
113	Threshold Photoelectron Spectrum of Cyclobutadiene: Comparison with Time-Dependent Wavepacket Simulations. Journal of Physical Chemistry Letters, 2021, 12, 6901-6906.	4.6	8
114	Unimolecular thermal decarbonylation of vanillin stifled by the bimolecular reactivity of methyl-loss intermediate. Journal of Analytical and Applied Pyrolysis, 2022, 161, 105410.	5.5	8
115	On the absolute photoionization cross section and threshold photoelectron spectrum of two reactive ketenes in lignin valorization: fulvenone and 2-carbonyl cyclohexadienone. Physical Chemistry Chemical Physics, 2022, 24, 3655-3663.	2.8	8
116	Photoionization of two substituted methyl radicals: Cyanomethyl and bromomethyl. Chemical Physics Letters, 2010, 500, 232-236.	2.6	7
117	Infrared Spectra of Reactive Species Generated by Flash Pyrolysis in a Free Jet. ChemPhysChem, 2010, 11, 3228-3230.	2.1	6
118	Isomerenselektive Erzeugung und spektroskopische Charakterisierung der Picolylâ€Radikale. Angewandte Chemie, 2017, 129, 8113-8116.	2.0	6
119	The Distant Double Bond Determines the Fate of the Carboxylic Group in the Dissociative Photoionization of Oleic Acid. ChemPhysChem, 2017, 18, 3595-3604.	2.1	6
120	Probing different spin states in xylyl radicals and ions. Physical Chemistry Chemical Physics, 2018, 20, 7180-7189.	2.8	6
121	Decomposition of Picolyl Radicals at High Temperature: A Mass Selective Threshold Photoelectron Spectroscopy Study. Chemistry - A European Journal, 2019, 25, 16652-16659.	3.3	6
122	How the methyl group position influences the ultrafast deactivation in aromatic radicals. Physical Chemistry Chemical Physics, 2019, 21, 581-588.	2.8	6
123	Double-Imaging Photoelectron Photoion Coincidence Spectroscopy Reveals the Unimolecular Thermal Decomposition Mechanism of Dimethyl Carbonate. Journal of Physical Chemistry A, 2021, 125, 2895-2904.	2.5	6
124	Unimolecular isomerisation of 1,5-hexadiyne observed by threshold photoelectron photoion coincidence spectroscopy. Faraday Discussions, 0, 238, 645-664.	3.2	6
125	Ammonia Borane, NH ₃ BH ₃ : A Threshold Photoelectron–Photoion Coincidence Study of a Potential Hydrogen‣torage Material. Chemistry - A European Journal, 2022, 28, .	3.3	6
126	Photoelectron spectroscopy of size-selected cluster ions using synchrotron radiation. Applied Physics A: Materials Science and Processing, 2014, 115, 771-779.	2.3	5

#	Article	IF	CITATIONS
127	Threshold Photoelectron Spectroscopy of IO and HOI. ChemPhysChem, 2019, 20, 2413-2416.	2.1	5
128	Isomer-Selective Threshold Photoelectron Spectra of Phenylnitrene and Its Thermal Rearrangement Products. Journal of Physical Chemistry A, 2020, 124, 3836-3843.	2.5	5
129	Dissociative Photoionization of Chloro-, Bromo-, and Iodocyclohexane: Thermochemistry and the Weak C–Br Bond in the Cation. Journal of Physical Chemistry A, 2021, 125, 646-656.	2.5	5
130	Direct Evidence on the Mechanism of Methane Conversion under Nonâ€oxidative Conditions over Ironâ€modified Silica: The Role of Propargyl Radicals Unveiled. Angewandte Chemie, 2021, 133, 24204-24209.	2.0	5
131	Threshold photoelectron spectroscopy of iminoborane, HBNH. Physical Chemistry Chemical Physics, 2021, 24, 20-24.	2.8	5
132	On the diversity of fossil and alternative gasoline combustion chemistry: A comparative flow reactor study. Combustion and Flame, 2022, 243, 111961.	5.2	5
133	Isomer-Dependent Selectivities in the Pyrolysis of Anisaldehyde. Energy & Fuels, 2022, 36, 7200-7205.	5.1	5
134	Threshold Dissociation of the 1-ethynylpyrene Cation at Internal Energies Relevant to H i Regions. Astrophysical Journal, 2019, 885, 21.	4.5	4
135	Characterisation of the first electronically excited state of protonated acetylene C2H3+ by coincident imaging photoelectron spectroscopy. Molecular Physics, 2021, 119, e1825851.	1.7	4
136	Formation of phenylacetylene and benzocyclobutadiene in the <i>ortho</i> -benzyne + acetylene reaction. Physical Chemistry Chemical Physics, 2022, 24, 1869-1876.	2.8	4
137	Threshold Photoelectron Spectroscopy of Quinoxaline, Quinazoline, and Cinnoline. Journal of Physical Chemistry A, 2022, 126, 2211-2221.	2.5	4
138	The threshold photoelectron spectrum of cyanovinylacetylene leads to an upward revision of the ionization energy. Chemical Physics Letters, 2015, 638, 201-204.	2.6	3
139	From Energetics to Intracluster Chemistry: Valence Photoionization of Trifluoromethylsulfur Pentafluoride (CF3SF5) by Double Velocity Map Imaging. Journal of Physical Chemistry A, 2021, 125, 2601-2611.	2.5	3
140	Photoelectron Photoion Coincidence Spectroscopy of NCl 3 and NCl 2. ChemPhysChem, 2021, 22, 2164-2167.	2.1	3
141	Mechanism and Kinetics of the Thermal Decomposition of Fe(C ₅ H ₅) ₂ in Inert and Reductive Atmosphere: A Synchrotronâ€Assisted Investigation in A Microreactor. Advanced Materials Interfaces, 2022, 9, .	3.7	3
142	Comparing Femtosecond Multiphoton Dissociative Ionization of Tetrathiafulvene with Imaging Photoelectron Photoion Coincidence Spectroscopy. Journal of Physical Chemistry A, 2013, 117, 2753-2759.	2.5	2
143	A magnetic bottle time-of-flight electron spectrometer suitable for continuous ionization sources. Review of Scientific Instruments, 2019, 90, 063105.	1.3	2
144	Gridless electron trap for a high-duty cycle magnetic bottle time-of-flight spectrometer. Journal of Electron Spectroscopy and Related Phenomena, 2020, 239, 146900.	1.7	2

#	Article	IF	CITATIONS
145	A plethora of isomerization processes and hydrogen scrambling in the fragmentation of the methanol dimer cation: a PEPICO study. Physical Chemistry Chemical Physics, 2022, 24, 1437-1446.	2.8	2
146	Insights into the decomposition of zirconium acetylacetonate using synchrotron radiation: Routes to the formation of volatile Zr-intermediates. Journal of Materials Research, 0, , 1.	2.6	1
147	Titelbild: Halogenbedingte OberflÃ e henbindung steuert die selektive Alkanfunktionalisierung zu Olefinen (Angew. Chem. 18/2019). Angewandte Chemie, 2019, 131, 5829-5829.	2.0	0
148	PTPC2019: Photon Tools for Physical Chemistry 2019. Chimia, 2019, 73, 210.	0.6	0
149	Frontispiece: Direct Evidence on the Mechanism of Methane Conversion under Nonâ€oxidative Conditions over Ironâ€modified Silica: The Role of Propargyl Radicals Unveiled. Angewandte Chemie - International Edition, 2021, 60, .	13.8	0
150	Frontispiz: Direct Evidence on the Mechanism of Methane Conversion under Nonâ€oxidative Conditions over Ironâ€modified Silica: The Role of Propargyl Radicals Unveiled. Angewandte Chemie, 2021, 133, .	2.0	0
151	Cover Feature: Ammonia Borane, NH ₃ BH ₃ : A Threshold Photoelectron–Photoion Coincidence Study of a Potential Hydrogen‣torage Material (Chem. Eur. J.) Tj ETQq	1 3.0 .784	∙3 104 rgBT /○