
Muhammad Riaz Ahmad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2994191/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fresh and hardened properties of one-part fly ash-based geopolymer binders cured at room temperature: Effect of slag and alkali activators. Journal of Cleaner Production, 2019, 225, 1-10.	9.3	217
2	A comprehensive study of basalt fiber reinforced magnesium phosphate cement incorporating ultrafine fly ash. Composites Part B: Engineering, 2019, 168, 204-217.	12.0	138
3	Effect of silica fume and basalt fiber on the mechanical properties and microstructure of magnesium phosphate cement (MPC) mortar. Construction and Building Materials, 2018, 190, 466-478.	7.2	121
4	Influence of superplasticizers and retarders on the workability and strength of one-part alkali-activated fly ash/slag binders cured at room temperature. Construction and Building Materials, 2019, 229, 116891.	7.2	103
5	Properties of magnesium phosphate cement containing steel slag powder. Construction and Building Materials, 2019, 195, 140-147.	7.2	94
6	Development of a new bio-composite for building insulation and structural purpose using corn stalk and magnesium phosphate cement. Energy and Buildings, 2018, 173, 719-733.	6.7	77
7	Improvement of early strength of fly ash-slag based one-part alkali activated mortar. Construction and Building Materials, 2020, 246, 118533.	7.2	74
8	Investigate the influence of expanded clay aggregate and silica fume on the properties of lightweight concrete. Construction and Building Materials, 2019, 220, 253-266.	7.2	71
9	Experimental research on the performance of lightweight concrete containing foam and expanded clay aggregate. Composites Part B: Engineering, 2019, 171, 46-60.	12.0	67
10	Multiproperty characterization of cleaner and energy-efficient vegetal concrete based on one-part geopolymer binder. Journal of Cleaner Production, 2020, 253, 119916.	9.3	66
11	Comparative study on the effect of fiber type and content on the performance of one-part alkali-activated mortar. Construction and Building Materials, 2020, 243, 118221.	7.2	66
12	Development of Cleaner One-part geopolymer from lithium slag. Journal of Cleaner Production, 2021, 291, 125241.	9.3	46
13	Influence of different admixtures on the mechanical and durability properties of one-part alkali-activated mortars. Construction and Building Materials, 2020, 265, 120320.	7.2	42
14	Microstructural characterization of basalt fiber reinforced magnesium phosphate cement supplemented by silica fume. Construction and Building Materials, 2020, 237, 117795.	7.2	41
15	Development of a sustainable and innovant hygrothermal bio-composite featuring the enhanced mechanical properties. Journal of Cleaner Production, 2019, 229, 128-143.	9.3	40
16	Improvement effect of pyrolyzed agro-food biochar on the properties of magnesium phosphate cement. Science of the Total Environment, 2020, 718, 137422.	8.0	36
17	Investigation of thermal performance of concrete incorporating different types of recycled coarse aggregates. Construction and Building Materials, 2021, 270, 121433.	7.2	36
18	Evaluating the physical and strength properties of fibre reinforced magnesium phosphate cement mortar considering mass loss. Construction and Building Materials, 2019, 217, 427-440.	7.2	34

#	Article	IF	CITATIONS
19	A study on magnesium phosphate cement mortars reinforced by polyvinyl alcohol fibers. Construction and Building Materials, 2021, 302, 124154.	7.2	34
20	Mechanical strength and flexural parameters analysis of micro-steel, polyvinyl and basalt fibre reinforced magnesium phosphate cement mortars. Construction and Building Materials, 2020, 235, 117447.	7.2	32
21	Influence of type of binder and size of plant aggregate on the hygrothermal properties of bio-concrete. Construction and Building Materials, 2020, 251, 118981.	7.2	32
22	Improvement of physico-mechanical and microstructural properties of magnesium phosphate cement composites comprising with Phosphogypsum. Journal of Cleaner Production, 2020, 261, 121268.	9.3	31
23	Effects of Alumina as an Effective Constituent of Metakaolin on Properties of Magnesium Phosphate Cements. Journal of Materials in Civil Engineering, 2019, 31, .	2.9	26
24	Preparation and study of magnesium ammonium phosphate cement from waste lithium slag. Journal of Cleaner Production, 2021, 316, 128371.	9.3	24
25	Development of novel design strength model for sustainable concrete columns: A new machine learning-based approach. Journal of Cleaner Production, 2022, 357, 131988.	9.3	23
26	Evolutionary artificial intelligence approach for performance prediction of bio-composites. Construction and Building Materials, 2021, 290, 123254.	7.2	22
27	Utilization of industrial and hazardous waste materials to formulate energy-efficient hygrothermal bio-composites. Journal of Cleaner Production, 2020, 250, 119469.	9.3	20
28	Experimental investigation on two new corn stalk biocomposites based on magnesium phosphate cement and ordinary Portland cement. Construction and Building Materials, 2019, 224, 700-710.	7.2	19
29	Mechanical and microstructural characterization of bio-concrete prepared with optimized alternative green binders. Construction and Building Materials, 2021, 281, 122533.	7.2	15
30	Upcycling of air pollution control residue waste into cementitious product through geopolymerization technology. Resources, Conservation and Recycling, 2022, 181, 106231.	10.8	15
31	Axial Stress-Strain Performance of Recycled Aggregate Concrete Reinforced with Macro-Polypropylene Fibres. Sustainability, 2021, 13, 5741.	3.2	14
32	Development of plant-concrete composites containing pretreated corn stalk bio-aggregates and different type of binders. Cement and Concrete Composites, 2021, 121, 104054.	10.7	14
33	Physical and mechanical properties of sustainable vegetal concrete exposed to extreme weather conditions. Construction and Building Materials, 2021, 287, 123024.	7.2	11
34	Study of a new capillary active bio-insulation material by hygrothermal simulation of multilayer wall. Energy and Buildings, 2021, 234, 110724.	6.7	10
35	Numerical and experimental investigation of the hygrothermal properties of corn stalk and magnesium phosphate cement (MPC) based bio-composites. Construction and Building Materials, 2020, 244, 118358.	7.2	9
36	Development of a novel compressive strength design equation for natural and recycled aggregate concrete through advanced computational modeling. Journal of Building Engineering, 2022, 55, 104690.	3.4	9

#	Article	IF	CITATIONS
37	Experimental investigation of pozzolanic concrete containing wheat straw ash. Canadian Journal of Civil Engineering, 2019, 46, 941-951.	1.3	5