Chun-Han Hsu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2993896/publications.pdf

Version: 2024-02-01

393982 377514 1,240 51 19 34 citations h-index g-index papers 53 53 53 1963 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	High Performance of Transferring Lithium Ion for Polyacrylonitrile-Interpenetrating Crosslinked Polyoxyethylene Network as Gel Polymer Electrolyte. ACS Applied Materials & Diterfaces, 2014, 6, 3156-3162.	4.0	132
2	Mesoporous carbon spheres grafted with carbon nanofibers for high-rate electric double layer capacitors. Carbon, 2011, 49, 895-903.	5.4	123
3	A new strategy for preparing oligomeric ionic liquid gel polymer electrolytes for high-performance and nonflammable lithium ion batteries. Journal of Membrane Science, 2016, 499, 462-469.	4.1	115
4	Aniline as a Dispersant and Stabilizer for the Preparation of Pt Nanoparticles Deposited on Carbon Nanotubes. Journal of Physical Chemistry C, 2010, 114, 7933-7939.	1.5	68
5	High thermal and electrochemical stability of PVDF-graft-PAN copolymer hybrid PEO membrane for safety reinforced lithium-ion battery. RSC Advances, 2016, 6, 18082-18088.	1.7	55
6	Stable Lithium Deposition Generated from Ceramic-Cross-Linked Gel Polymer Electrolytes for Lithium Anode. ACS Applied Materials & Samp; Interfaces, 2016, 8, 15216-15224.	4.0	51
7	Three-dimensional network of graphene grown with carbon nanotubes as carbon support for fuel cells. Energy, 2013, 53, 282-287.	4.5	49
8	Excellent performance of PtO on high nitrogen-containing carbon nanotubes using aniline as nitrogen/carbon source, dispersant and stabilizer. Chemical Communications, 2010, 46, 7628.	2.2	35
9	Stabilization of Embedded Pt Nanoparticles in the Novel Nanostructure Carbon Materials. ACS Applied Materials & Samp; Interfaces, 2011, 3, 115-118.	4.0	35
10	Vulcanized polymeric cathode material featuring a polyaniline skeleton for high-rate rechargeability and long-cycle stability lithium-sulfur batteries. Electrochimica Acta, 2018, 276, 111-117.	2.6	33
11	Mesoporous SiO ₂ /carbon hollow spheres applied towards a high rate-performance Li-battery anode. Inorganic Chemistry Frontiers, 2016, 3, 1398-1405.	3.0	32
12	Hierarchical Micro/Mesoporous Carbons Synthesized with a ZnO Template and Petroleum Pitch via a Solvent-Free Process for a High-Performance Supercapacitor. ACS Omega, 2017, 2, 2106-2113.	1.6	31
13	The use of carbon nanotubes coated with a porous nitrogen-doped carbon layer with embedded Pt for the methanol oxidation reaction. Journal of Power Sources, 2012, 198, 83-89.	4.0	29
14	Benzylamine-Assisted Noncovalent Exfoliation of Graphite-Protecting Pt Nanoparticles Applied as Catalyst for Methanol Oxidation. ACS Applied Materials & Samp; Interfaces, 2011, 3, 2169-2172.	4.0	27
15	Ionic Conducting and Surface Active Binder of Poly (ethylene oxide)-block-poly(acrylonitrile) for High Power Lithium-ion Battery. Electrochimica Acta, 2016, 196, 41-47.	2.6	27
16	Synthesis of Carbon and Silica Hollow Spheres with Mesoporous Shells using Polyethylene Oxide/Phenol Formaldehyde Polymer Blend. European Journal of Inorganic Chemistry, 2007, 2007, 3798-3804.	1.0	24
17	Synthesis of Multiporous Carbons from the Water Caltrop Shell for High-Performance Supercapacitors. ACS Omega, 2020, 5, 10626-10632.	1.6	23
18	Nanostructured Coral-like Carbon as Pt Support for Fuel Cells. Journal of Physical Chemistry C, 2010, 114, 6976-6982.	1.5	22

#	Article	IF	CITATIONS
19	Sea urchin-like mesoporous carbon material grown with carbon nanotubes as a cathode catalyst support for fuel cells. Journal of Power Sources, 2010, 195, 7983-7990.	4.0	20
20	Rice husk agricultural waste-derived low ionic content carbon–silica nanocomposite for green reinforced epoxy resin electronic packaging material. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78, 493-499.	2.7	20
21	Controllableâ€Nitrogen Doped Carbon Layer Surrounding Carbon Nanotubes as Novel Carbon Support for Oxygen Reduction Reaction. Fuel Cells, 2012, 12, 649-655.	1.5	19
22	Nitrogen-doped mesoporous carbon hollow spheres as a novel carbon support for oxygen reduction reaction. New Journal of Chemistry, 2014, 38, 5521-5526.	1.4	19
23	Synthesis of mesoporous Cu Fe/silicates catalyst for methanol steam reforming. International Journal of Hydrogen Energy, 2019, 44, 14416-14423.	3.8	19
24	Preparation of Mesoporous Silica and Carbon Using Gelatin or Gelatin–Phenol–Formaldehyde Polymer Blend as Template. Chemistry Letters, 2007, 36, 1258-1259.	0.7	18
25	High thermal and electrochemical stability of a SiO ₂ nanoparticle hybird–polyether cross-linked membrane for safety reinforced lithium-ion batteries. RSC Advances, 2016, 6, 18089-18095.	1.7	17
26	Hollow Li2FeSiO4 spheres as cathode and anode material for lithium-ion battery. Journal of Alloys and Compounds, 2019, 797, 1007-1012.	2.8	15
27	Effects of morphology and pore size of mesoporous silicas on the efficiency of an immobilized enzyme. RSC Advances, 2021, 11, 10010-10017.	1.7	15
28	Synthesis and regeneration of mesoporous Ni–Cu/Al2O4 catalyst in sub-kilogram-scale for methanol steam reforming reaction. International Journal of Hydrogen Energy, 2022, 47, 37542-37551.	3.8	14
29	Carbon fibers as three-dimensional current collectors for silicon/reduced graphene oxide lithium ion battery anodes with improved rate performance and cycle life. New Journal of Chemistry, 2018, 42, 9058-9064.	1.4	13
30	High rate performance intensified by nanosized LiFePO4 combined with three-dimensional graphene networks. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	12
31	Highâ€Speed Lithiumâ€lon Transfer inside Mesoporous Core–Shell LiFePO ₄ /Carbonâ€Sphere Cathodes. Energy Technology, 2014, 2, 409-413.	1.8	12
32	Synthesis of porous carbon and silica spheres using PEO-PF polymer blends. Journal of Porous Materials, 2006, 13, 195-199.	1.3	11
33	Li2FeSiO4 nanorod as high stability electrode for lithium-ion batteries. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	10
34	Rice Huskâ€derived Hierarchical Micro/Mesoporous Carbon–Silica Nanocomposite as Superior Filler for Green Electronic Packaging Material. Journal of the Chinese Chemical Society, 2017, 64, 427-433.	0.8	9
35	Green synthesis of porous <scp>Niâ€silicate</scp> catalyst for hydrogen generation via ammonia decomposition. International Journal of Energy Research, 2020, 44, 9748-9756.	2.2	9
36	Oneâ€pot synthesis of sheetâ€like <scp>MFI</scp> as highâ€performance catalyst for toluene disproportionation. Journal of the American Ceramic Society, 2018, 101, 3719-3728.	1.9	8

#	Article	IF	CITATIONS
37	Synthesis of High-Performance Photonic Crystal Film for SERS Applications via Drop-Coating Method. Coatings, 2020, 10, 679.	1.2	8
38	Template-free synthesis of mesoporous Mn3O4-Al2O3 catalyst for low temperature selective catalytic reduction of NO with NH3. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 627-633.	2.7	7
39	Fabrication and Characterization of Nylon 66/PAN Nanofibrous Film Used as Separator of Lithium-Ion Battery. Polymers, 2021, 13, 1984.	2.0	7
40	Synthesis of mesoporous silicas with different pore sizes using PEO polymers via hydrothermal treatment: A direct template for mesoporous carbon. Materials Chemistry and Physics, 2006, 100, 112-116.	2.0	6
41	Electrochemical fabrication and evaluation of a self-standing carbon nanotube/carbon fiber composite electrode for lithium-ion batteries. RSC Advances, 2019, 9, 33117-33123.	1.7	6
42	Green and Highly-Efficient Microwave Synthesis Route for Sulfur/Carbon Composite for Li-S Battery. International Journal of Molecular Sciences, 2022, 23, 39.	1.8	6
43	Iridescent Colloidal Crystals Composed of SiO ₂ Porous Hollow Sphere for SERS Application. Langmuir, 2022, 38, 6217-6223.	1.6	6
44	Interconnected Microporous and Mesoporous Carbon Derived from Pitch for Lithium–Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 4462-4472.	3.2	5
45	Biodegradable Gelatin as Template for the Preparation of Mesoporous Alumina. Journal of the Chinese Chemical Society, 2018, 65, 424-429.	0.8	4
46	Synthesis of mesoporous silica and mesoporous carbon using gelatin as organic template. Studies in Surface Science and Catalysis, 2007, 165, 385-388.	1.5	3
47	Synthesis of mesoporous carbon platelets of high surface area and large porosity from polymer blendsâ€calcium phosphate nanocomposites for highâ€power supercapacitor. Journal of the Chinese Chemical Society, 2021, 68, 462-468.	0.8	3
48	The intensively enhanced conductivity of polyelectrolytes by amphiphilic compound doping. Polymer Chemistry, 2015, 6, 2717-2725.	1.9	2
49	Enhanced Thermal Stability in <scp>SiO₂</scp> /Carbon Filler Derived from Rice Husk via Microwave Treatment for Electronic Packaging Application. Journal of the Chinese Chemical Society, 2017, 64, 1035-1040.	0.8	2
50	Synthesis of Mesoporous Cu-Ni/Al2O4 Catalyst for Hydrogen Production via Hydrothermal Reconstruction Route. Catalysts, 2022, 12, 32.	1.6	2
51	Green synthesis of nitrogen-doped multiporous carbons for oxygen reduction reaction using water-caltrop shells and eggshell waste. RSC Advances, 2021, 11, 15738-15747.	1.7	1