Hero Jan Heeres

List of Publications by Citations

Source: https://exaly.com/author-pdf/2993389/hero-jan-heeres-publications-by-citations.pdf

Version: 2024-04-04

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

66 15,269 302 113 h-index g-index citations papers 6.8 6.99 17,255 319 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
302	Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. <i>Chemical Reviews</i> , 2013 , 113, 1499-597	68.1	1935
301	Hydrotreatment of Fast Pyrolysis Oil Using Heterogeneous Noble-Metal Catalysts. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 10324-10334	3.9	461
300	Kinetic Study on the Acid-Catalyzed Hydrolysis of Cellulose to Levulinic Acid. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 1696-1708	3.9	395
299	Green Chemicals. Chemical Engineering Research and Design, 2006, 84, 339-349	5.5	384
298	Formation, molecular structure, and morphology of humins in biomass conversion: influence of feedstock and processing conditions. <i>ChemSusChem</i> , 2013 , 6, 1745-58	8.3	380
297	Caprolactam from renewable resources: catalytic conversion of 5-hydroxymethylfurfural into caprolactone. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 7083-7	16.4	337
296	Stabilization of biomass-derived pyrolysis oils. <i>Journal of Chemical Technology and Biotechnology</i> , 2010 , 85, 674-686	3.5	336
295	A kinetic study on the decomposition of 5-hydroxymethylfurfural into levulinic acid. <i>Green Chemistry</i> , 2006 , 8, 701	10	329
294	Hydrodynamics and mass transfer characteristics in gasIlquid flow through a rectangular microchannel. <i>Chemical Engineering Science</i> , 2007 , 62, 2096-2108	4.4	316
293	Combined dehydration/(transfer)-hydrogenation of C6-sugars (D-glucose and D-fructose) to Evalerolactone using ruthenium catalysts. <i>Green Chemistry</i> , 2009 , 11, 1247	10	239
292	Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid. <i>Bioresource Technology</i> , 2008 , 99, 8367-75	11	183
291	Catalytic hydrotreatment of fast-pyrolysis oil using non-sulfided bimetallic Ni-Cu catalysts on a EAl2O3 support. <i>Applied Catalysis B: Environmental</i> , 2012 , 117-118, 105-117	21.8	163
2 90	Green Chemicals from d-glucose: Systematic Studies on Catalytic Effects of Inorganic Salts on the Chemo-Selectivity and Yield in Aqueous Solutions. <i>Topics in Catalysis</i> , 2010 , 53, 1241-1247	2.3	153
289	Catalyst studies on the hydrotreatment of fast pyrolysis oil. <i>Applied Catalysis B: Environmental</i> , 2010 , 99, 298-306	21.8	152
288	Chiral separation by enantioselective liquid-liquid extraction. <i>Organic and Biomolecular Chemistry</i> , 2011 , 9, 36-51	3.9	150
287	An efficient one pot conversion of glycerol to lactic acid using bimetallic gold-platinum catalysts on a nanocrystalline CeO2 support. <i>Applied Catalysis B: Environmental</i> , 2014 , 147, 92-100	21.8	144
286	Pyrolysis of wheat straw-derived organosolv lignin. <i>Journal of Analytical and Applied Pyrolysis</i> , 2012 , 93, 95-103	6	142

(2012-2010)

Insights in the hydrotreatment of fast pyrolysis oil using a ruthenium on carbon catalyst. <i>Energy and Environmental Science</i> , 2010 , 3, 962	35.4	137
Catalytic oligomerization of terminal alkynes by lanthanide carbyls (.eta.5-C5Me5)2LnCH(SiMe3)2 (Ln = Y, La, Ce). <i>Organometallics</i> , 1991 , 10, 1980-1986	3.8	133
Tunable and selective conversion of 5-HMF to 2,5-furandimethanol and 2,5-dimethylfuran over copper-doped porous metal oxides. <i>ChemSusChem</i> , 2014 , 7, 2266-75	8.3	132
An experimental study of airWater Taylor flow and mass transfer inside square microchannels. <i>Chemical Engineering Science</i> , 2009 , 64, 3697-3708	4.4	125
Identification of components in fast pyrolysis oil and upgraded products by comprehensive two-dimensional gas chromatography and flame ionisation detection. <i>Journal of Chromatography A</i> , 2007 , 1150, 21-7	4.5	123
Water absorption, retention and the swelling characteristics of cassava starch grafted with polyacrylic acid. <i>Carbohydrate Polymers</i> , 2014 , 103, 325-32	10.3	112
Solvent free depolymerization of Kraft lignin to alkyl-phenolics using supported NiMo and CoMo catalysts. <i>Green Chemistry</i> , 2015 , 17, 4921-4930	10	111
Hydrotreatment of wood-based pyrolysis oil using zirconia-supported mono- and bimetallic (Pt, Pd, Rh) catalysts. <i>Applied Catalysis A: General</i> , 2011 , 407, 56-66	5.1	111
Bis(pentamethylcyclopentadienyl) complexes of cerium(III). Crystal structure of (C5Me5)2CeCH(SiMe3)2. <i>Organometallics</i> , 1988 , 7, 2495-2502	3.8	106
Mono(pentamethylcyclopentadienyl) complexes of cerium(III). Synthesis, molecular structure, thermal stability, and reactivity of (C5Me5)CeX2 (X = 2,6-di-tert-butylphenoxo, CH(SiMe3)2, and N(SiMe3)2) complexes. <i>Organometallics</i> , 1989 , 8, 2637-2646	3.8	105
Multiphase flow processing in microreactors combined with heterogeneous catalysis for efficient and sustainable chemical synthesis. <i>Catalysis Today</i> , 2018 , 308, 3-19	5.3	104
Process intensification in the future production of base chemicals from biomass. <i>Chemical Engineering and Processing: Process Intensification</i> , 2012 , 51, 117-136	3.7	104
Catalytic hydrotreatment of fast pyrolysis oil using bimetallic Ni L u catalysts on various supports. <i>Applied Catalysis A: General</i> , 2012 , 449, 121-130	5.1	103
Recovery of acetic acid from an aqueous pyrolysis oil phase by reactive extraction using tri-n-octylamine. <i>Chemical Engineering Journal</i> , 2011 , 176-177, 244-252	14.7	103
Integration of Microreactors with Spectroscopic Detection for Online Reaction Monitoring and Catalyst Characterization. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 14583-14609	3.9	102
Biomass to Fuels. Chemical Engineering Research and Design, 2007, 85, 466-472	5.5	102
Experimental and Kinetic Modeling Studies on the Sulfuric Acid Catalyzed Conversion of d-Fructose to 5-Hydroxymethylfurfural and Levulinic Acid in Water. <i>ACS Sustainable Chemistry and Engineering</i> , 2015 , 3, 3024-3034	8.3	96
In situ catalytic pyrolysis of lignocellulose using alkali-modified amorphous silica alumina. Bioresource Technology, 2012 , 118, 374-81	11	96
	Environmental Science, 2010, 3, 962 Catalytic oligomerization of terminal alkynes by lanthanide carbyls (.eta.5-C5Me5)2LnCH(SiMe3)2 (Ln = Y, La, Ce). Organometallics, 1991, 10, 1980-1986 Tunable and selective conversion of 5-HMF to 2,5-furandimethanol and 2,5-dimethylfuran over copper-doped porous metal oxides. ChemisusChem, 2014, 7, 2266-75 An experimental study of air@ater Taylor flow and mass transfer inside square microchannels. Chemical Engineering Science, 2009, 64, 3697-3708 Identification of components in fast pyrolysis oil and upgraded products by comprehensive two-dimensional gas chromatography and flame ionisation detection. Journal of Chromatography A, 2007, 1150, 21-7 Water absorption, retention and the swelling characteristics of cassava starch grafted with polyacrylic acid. Carbohydrate Polymers, 2014, 103, 325-32 Solvent free depolymerization of Kraft lignin to alkyl-phenolics using supported NiMo and CoMo catalysts. Green Chemistry, 2015, 17, 4921-4930 Hydrotreatment of wood-based pyrolysis oil using zirconia-supported mono- and bimetallic (Pt, Pd, Rh) catalysts. Applied Catalysis A: General, 2011, 407, 56-66 Bis(pentamethylcyclopentadienyl) complexes of cerium(III). Synthesis, molecular structure, thermal stability, and reactivity of (CSMe5)CeX2 (X = 2,6-di-tert-butylphenoxo, CH(SiMe3)2, and N(SiMe3)2) complexes. Organometallics, 1989, 8, 2637-2646 Multiphase flow processing in microreactors combined with heterogeneous catalysis for efficient and sustainable chemical synthesis. Catalysis Today, 2018, 308, 3-19 Process intensification in the future production of base chemicals from biomass. Chemical Engineering and Processing: Process Intensification, 2012, 51, 117-136 Catalytic hydrotreatment of fast pyrolysis oil using bimetallic NiEu catalysts on various supports. Applied Catalysis A: General, 2012, 449, 121-130 Recovery of acetic acid from an aqueous pyrolysis oil phase by reactive extraction using trin-octylamine. Chemical Engineering Journal, 2011, 176-177, 244-252 Integratio	Catalytic oligomerization of terminal alkynes by lanthanide carbyls (.eta.5-C5Me5)2LnCH(SiMe3)2 (.n = Y, La, Ce). Organometallics, 1991, 10, 1980-1986 38 Tunable and selective conversion of 5-HMF to 2,5-furandimethanol and 2,5-dimethylfuran over copper-doped porous metal oxides. ChemSusChem, 2014, 7, 2266-75 83 An experimental study of air@ater Taylor flow and mass transfer inside square microchannels. Chemical Engineering Science, 2009, 64, 3697-3708 44 Identification of components in fast pyrolysis oil and upgraded products by comprehensive two-dimensional gas chromatography and flame ionisation detection. Journal of Chromatography A, 45 2007, 1150, 21-7 Water absorption, retention and the swelling characteristics of cassava starch grafted with polyacrylic acid. Carbohydrate Polymers, 2014, 103, 325-32 Solvent free depolymerization of Kraft lignin to alkyl-phenolics using supported NiMo and CoMo catalysts. Green Chemistry, 2015, 17, 4921-4930 Hydrotreatment of wood-based pyrolysis oil using zirconia-supported mono- and bimetallic (Pt. Pd., Rh) catalysts. Applied Catalysis A: General, 2011, 407, 56-66 Bis(pentamethylcyclopentadienyl) complexes of cerium(III). Crystal structure of (CSMe5)2CeCH(SiMe3)2. Organometallics, 1988, 7, 2495-2502 Mono(pentamethylcyclopentadienyl) complexes of cerium(III). Synthesis, molecular structure, thermal stability, and reactivity of (CSMe5)CeX (X = 2.6-di-tert-butylphenoxo, CH(SiMe3)2, and N(SiMe3)2) complexes. Organometallics, 1989, 8, 2637-2646 Multiphase flow processing in microreactors combined with heterogeneous catalysis for efficient and sustainable chemical synthesis. Catalysis Today, 2018, 308, 3-19 Process intensification in the future production of base chemicals from biomass. Chemical Engineering and Processing: Process Intensification, 2012, 51, 117-136 37 Recovery of acetic acid from an aqueous pyrolysis oil ohase by reactive extraction using trin-octylamine. Chemical Engineering Journal, 2011, 176-177, 2442-52 Integration of Microreactors with Spectro

267	Experimental and kinetic modeling studies on the biphasic hydrogenation of levulinic acid to Evalerolactone using a homogeneous water-soluble Ru(TPPTS) catalyst. <i>Journal of Molecular Catalysis A</i> , 2011 , 341, 14-21		95
266	Efficient catalytic hydrotreatment of Kraft lignin to alkylphenolics using supported NiW and NiMo catalysts in supercritical methanol. <i>Green Chemistry</i> , 2015 , 17, 5046-5057	10	94
265	Catalytic conversion of dihydroxyacetone to lactic acid using metal salts in water. <i>ChemSusChem</i> , 2011 , 4, 768-77	8.3	94
264	Identification and classification of components in flash pyrolysis oil and hydrodeoxygenated oils by two-dimensional gas chromatography and time-of-flight mass spectrometry. <i>Journal of Chromatography A</i> , 2008 , 1188, 17-25	4.5	93
263	Monomeric bis(pentamethylcyclopentadienyl)titanium(III) complexes with halide, borohydride, amide, alkoxide, and carboxylate ligands. X-ray structure of bis(pentamethylcyclopentadienyl)titanium(III) chloride. <i>Organometallics</i> , 1987 , 6, 1004-1010	3.8	93
262	Reversible carbon-carbon bond formation in organolanthanide systems. Preparation and properties of lanthanide acetylides [Cp*2LnC.tplbond.CR]n and their rearrangement products [Cp*2Ln]2(.mueta.2:.eta.2-RC4R) (Ln = La, Ce; R = alkyl). <i>Organometallics</i> , 1993 , 12, 2609-2617	3.8	91
261	Catalytic hydrodeoxygenation and hydrocracking of Alcell [] lignin in alcohol/formic acid mixtures using a Ru/C catalyst. <i>Biomass and Bioenergy</i> , 2015 , 80, 147-161	5.3	90
260	From 5-Hydroxymethylfurfural (HMF) to Polymer Precursors: Catalyst Screening Studies on the Conversion of 1,2,6-hexanetriol to 1,6-hexanediol. <i>Topics in Catalysis</i> , 2012 , 55, 612-619	2.3	90
259	Catalytic Hydrotreatment of Alcell Lignin Using Supported Ru, Pd, and Cu Catalysts. <i>ACS Sustainable Chemistry and Engineering</i> , 2015 , 3, 1905-1914	8.3	89
258	Equilibrium Studies on Enantioselective Liquid Liquid Amino Acid Extraction Using a Cinchona Alkaloid Extractant. <i>Industrial & amp; Engineering Chemistry Research</i> , 2008 , 47, 10027-10033	3.9	87
257	Copper-zinc alloy nanopowder: a robust precious-metal-free catalyst for the conversion of 5-hydroxymethylfurfural. <i>ChemSusChem</i> , 2015 , 8, 1323-7	8.3	84
256	Characterization of Hydrotreated Fast Pyrolysis Liquids. <i>Energy & Description</i> 24, 5264-5272	4.1	84
255	Competition between hydrotreating and polymerization reactions during pyrolysis oil hydrodeoxygenation. <i>AICHE Journal</i> , 2011 , 57, 3160-3170	3.6	80
254	Catalytic hydrotreatment of fast pyrolysis oil: Model studies on reaction pathways for the carbohydrate fraction. <i>Environmental Progress and Sustainable Energy</i> , 2009 , 28, 450-460	2.5	80
253	Micro-pyrolysis of technical lignins in a new modular rig and product analysis by GCMS/FID and GC IGCIIOFMS/FID. <i>Journal of Analytical and Applied Pyrolysis</i> , 2009 , 85, 38-46	6	79
252	Experimental and modeling studies on the enantio-separation of 3,5-dinitrobenzoyl-(R),(S)-leucine by continuous liquidIlquid extraction in a cascade of centrifugal contactor separators. <i>Chemical Engineering Science</i> , 2010 , 65, 4682-4690	4.4	79
251	Synthesis and reactivity of tervalent paramagnetic titanium compounds (.eta.5-C5Me5)2TiR: molecular structure of (.eta.5-C5Me5)2TiCH2CMe3. <i>Organometallics</i> , 1991 , 10, 3227-3237	3.8	79
250	On the synthesis of monopentamethylcyclopentadienyl derivatives of yttrium, lanthanum, and cerium. <i>Journal of Organometallic Chemistry</i> , 1989 , 364, 79-86	2.3	78

(2009-2008)

249	Continuous Chiral Separation of Amino Acid Derivatives by Enantioselective Liquid Iquid Extraction in Centrifugal Contactor Separators. <i>Organic Process Research and Development</i> , 2008 , 12, 950-955	3.9	75	
248	Hydrogenation of Levulinic Acid to Evalerolactone in Water Using Millimeter Sized Supported Ru Catalysts in a Packed Bed Reactor. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 2939-2950	8.3	73	
247	Catalytic hydrotreatment of pyrolytic lignins to give alkylphenolics and aromatics using a supported Ru catalyst. <i>Catalysis Science and Technology</i> , 2014 , 4, 2367-2377	5.5	72	
246	Dehydration of different ketoses and aldoses to 5-hydroxymethylfurfural. <i>ChemSusChem</i> , 2013 , 6, 1681	-8 .3	71	
245	Biomass valorisation by staged degasification: A new pyrolysis-based thermochemical conversion option to produce value-added chemicals from lignocellulosic biomass. <i>Journal of Analytical and Applied Pyrolysis</i> , 2009 , 85, 124-133	6	71	
244	Acetic Acid Recovery from Fast Pyrolysis Oil. An Exploratory Study on Liquid-Liquid Reactive Extraction using Aliphatic Tertiary Amines. <i>Separation Science and Technology</i> , 2008 , 43, 3056-3074	2.5	69	
243	Ring-opening of Evalerolactone with amino compounds. <i>Journal of Applied Polymer Science</i> , 2012 , 123, 3556-3564	2.9	68	
242	The Catalytic Conversion of d-Glucose to 5-Hydroxymethylfurfural in DMSO Using Metal Salts. <i>Topics in Catalysis</i> , 2012 , 55, 543-549	2.3	68	
241	Caprolactam from Renewable Resources: Catalytic Conversion of 5-Hydroxymethylfurfural into Caprolactone. <i>Angewandte Chemie</i> , 2011 , 123, 7221-7225	3.6	68	
240	Reforming of methanol and glycerol in supercritical water. <i>Journal of Supercritical Fluids</i> , 2011 , 58, 99-1	14.2	68	
239	Continuous synthesis of 5-hydroxymethylfurfural from glucose using a combination of AlCl3 and HCl as catalyst in a biphasic slug flow capillary microreactor. <i>Chemical Engineering Journal</i> , 2020 , 381, 122754	14.7	68	
238	Scalable Enantioseparation of Amino Acid Derivatives Using Continuous Liquidliquid Extraction in a Cascade of Centrifugal Contactor Separators. <i>Organic Process Research and Development</i> , 2009 , 13, 911-914	3.9	67	
237	Hydrogenation of fast pyrolyis oil and model compounds in a two-phase aqueous organic system using homogeneous ruthenium catalysts. <i>Journal of Molecular Catalysis A</i> , 2007 , 264, 227-236		66	
236	The application of fine TiO2 particles for enhanced gas absorption. <i>Chemical Engineering Journal</i> , 2003 , 92, 151-159	14.7	65	
235	Glycerol reforming in supercritical water; a short review. <i>Renewable and Sustainable Energy Reviews</i> , 2013 , 23, 40-48	16.2	64	
234	Lactic Acid Extraction and Mass Transfer Characteristics in Slug Flow Capillary Microreactors. <i>Industrial & Engineering Chemistry Research</i> , 2016 , 55, 4691-4702	3.9	63	
233	Methanol synthesis beyond chemical equilibrium. <i>Chemical Engineering Science</i> , 2013 , 87, 204-208	4.4	62	
232	Valorisation of Jatropha curcas L. plant parts: Nut shell conversion to fast pyrolysis oil. <i>Food and Bioproducts Processing</i> , 2009 , 87, 187-196	4.9	62	

Organolanthanide-catalyzed cyclodimerizations of disubstituted alkynes. Organometallics, 1990, 9, 150831510 62

230	Experimental studies on the pyrolysis of humins from the acid-catalysed dehydration of C6-sugars. <i>Journal of Analytical and Applied Pyrolysis</i> , 2013 , 104, 299-307	6	61
229	Recent advances in hydrothermal carbonisation: from tailored carbon materials and biochemicals to applications and bioenergy. <i>Green Chemistry</i> , 2020 , 22, 4747-4800	10	58
228	Catalyst studies on the ring opening of tetrahydrofurandimethanol to 1,2,6-hexanetriol. <i>Catalysis Today</i> , 2013 , 210, 106-116	5.3	58
227	Synthesis of Higher Fatty Acid Starch Esters using Vinyl Laurate and Stearate as Reactants. Starch/Staerke, 2008, 60, 667-675	2.3	58
226	Kinetic modeling of levulinic acid hydrogenation to Evalerolactone in water using a carbon supported Ru catalyst. <i>Applied Catalysis A: General</i> , 2016 , 525, 158-167	5.1	58
225	Hydrodynamics and mass transfer of gas[Iquid flow in a falling film microreactor. <i>AICHE Journal</i> , 2009 , 55, 1110-1120	3.6	57
224	An efficient magnetic carbon-based solid acid treatment for corncob saccharification with high selectivity for xylose and enhanced enzymatic digestibility. <i>Green Chemistry</i> , 2019 , 21, 1292-1304	10	54
223	Graft copolymerization of acrylic acid to cassava starchevaluation of the influences of process parameters by an experimental design method. <i>Carbohydrate Polymers</i> , 2012 , 90, 1522-9	10.3	54
222	Hydrogenation of levulinic acid to Evalerolactone over anatase-supported Ru catalysts: Effect of catalyst synthesis protocols on activity. <i>Applied Catalysis A: General</i> , 2018 , 549, 197-206	5.1	53
221	Catalytic pyrolysis of crude glycerol over shaped ZSM-5/bentonite catalysts for bio-BTX synthesis. <i>Applied Catalysis B: Environmental</i> , 2018 , 235, 45-55	21.8	53
220	Kinetic studies on the Rhizomucor miehei lipase catalyzed esterification reaction of oleic acid with 1-butanol in a biphasic system. <i>Biochemical Engineering Journal</i> , 2008 , 41, 87-94	4.2	53
219	Optimization of mechanical oil extraction from Jatropha curcas L. kernel using response surface method. <i>Industrial Crops and Products</i> , 2015 , 63, 294-302	5.9	52
218	Ni-Based Catalysts for the Hydrotreatment of Fast Pyrolysis Oil. <i>Energy & Discourse (Marches)</i> 2016, 30, 1544-155	544.1	52
217	Biobased chemicals from the catalytic depolymerization of Kraft lignin using supported noble metal-based catalysts. <i>Fuel Processing Technology</i> , 2018 , 179, 143-153	7.2	52
216	Novel highly integrated biodiesel production technology in a centrifugal contactor separator device. <i>Chemical Engineering Journal</i> , 2009 , 154, 384-389	14.7	51
215	CH Activation of Acetonitrile by Alkyl Compounds of the Early Lanthanoids: Dimeric Cyanomethyl-Lanthanoid Complexes with CH2CN Bridges. <i>Angewandte Chemie International Edition in English</i> , 1990 , 29, 420-422		49
214	Experimental and Kinetic Modeling Studies on the Conversion of Sucrose to Levulinic Acid and 5-Hydroxymethylfurfural Using Sulfuric Acid in Water. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 13228-13239	3.9	47

213	Effect of a potassium promoter on the Fischer Tropsch synthesis of light olefins over iron carbide catalysts encapsulated in graphene-like carbon. <i>Catalysis Science and Technology</i> , 2019 , 9, 2728-2741	5.5	45	
212	Full, Reactive Solubilization of Humin Byproducts by Alkaline Treatment and Characterization of the Alkali-Treated Humins Formed. <i>ACS Sustainable Chemistry and Engineering</i> , 2015 , 3, 533-543	8.3	45	
211	Highly active, recyclable catalyst for the manufacture of viscous, low molecular weight, COBtheneBropene-based polyketone, base component for a new class of resins. <i>Inorganica Chimica Acta</i> , 2002 , 327, 147-159	2.7	45	
210	Catalytic Transformation of Biomass Derivatives to Value-Added Chemicals and Fuels in Continuous Flow Microreactors. <i>ChemCatChem</i> , 2019 , 11, 4671-4708	5.2	44	
209	Biobased alkylphenols from lignins via a two-step pyrolysis - Hydrodeoxygenation approach. <i>Bioresource Technology</i> , 2017 , 229, 160-168	11	42	
208	Supercritical carbon dioxide (scCO2) induced gelatinization of potato starch. <i>Carbohydrate Polymers</i> , 2009 , 78, 511-519	10.3	40	
207	Monocyclopentadienyl yttrium chemistry: incorporation of alkoxides as supporting ligands and synthesis of [Y(C5Me5)(OC6H3But2)(Ū-H)]2. <i>Journal of the Chemical Society Chemical Communications</i> , 1991 , 642-644		40	
206	Catalytic pyrolysis of recalcitrant, insoluble humin byproducts from C6 sugar biorefineries. <i>Journal of Analytical and Applied Pyrolysis</i> , 2017 , 123, 134-143	6	39	
205	Stabilization of Self-Assembled Alumina Mesophases. <i>Chemistry of Materials</i> , 2013 , 25, 848-855	9.6	39	
204	Hydrodynamic features of centrifugal contactor separators: Experimental studies on liquid hold-up, residence time distribution, phase behavior and drop size distributions. <i>Chemical Engineering and Processing: Process Intensification</i> , 2012 , 55, 8-19	3.7	38	
203	Hydrotreatment of pyrolytic lignins to aromatics and phenolics using heterogeneous catalysts. <i>Fuel Processing Technology</i> , 2019 , 189, 28-38	7.2	37	
202	Sugarcane bagasse ex-situ catalytic fast pyrolysis for the production of Benzene, Toluene and Xylenes (BTX). <i>Journal of Analytical and Applied Pyrolysis</i> , 2018 , 131, 1-8	6	37	
201	Base-free, one-pot chemocatalytic conversion of glycerol to methyl lactate using supported gold catalysts. <i>ChemSusChem</i> , 2014 , 7, 1140-7	8.3	37	
200	Enantioselective liquid[Iquid extraction of (R,S)-phenylglycinol using a bisnaphthyl phosphoric acid derivative as chiral extractant. <i>Tetrahedron</i> , 2011 , 67, 462-470	2.4	36	
199	Selective fructose dehydration to 5-hydroxymethylfurfural from a fructose-glucose mixture over a sulfuric acid catalyst in a biphasic system: Experimental study and kinetic modelling. <i>Chemical Engineering Journal</i> , 2021 , 409, 128182	14.7	36	
198	Insight into the hydrogenation of pure and crude HMF to furan diols using Ru/C as catalyst. <i>Applied Catalysis A: General</i> , 2019 , 578, 122-133	5.1	35	
197	Process intensification of catalytic liquid-liquid solid processes: Continuous biodiesel production using an immobilized lipase in a centrifugal contactor separator. <i>Chemical Engineering Journal</i> , 2017 , 321, 76-85	14.7	34	
196	Catalytic upgrading of sugar fractions from pyrolysis oils in supercritical mono-alcohols over Cu doped porous metal oxide. <i>Applied Catalysis B: Environmental</i> , 2015 , 166-167, 56-65	21.8	34	

195	Mechanical extraction of oil from Jatropha curcas L. kernel: Effect of processing parameters. <i>Industrial Crops and Products</i> , 2015 , 63, 303-310	5.9	34
194	Preparation and properties of binderless boards from Jatropha curcas L. seed cake. <i>Industrial Crops and Products</i> , 2014 , 52, 245-254	5.9	34
193	Characterization of Physic nut (Jatropha curcas L.) shells. <i>Biomass and Bioenergy</i> , 2012 , 37, 177-187	5.3	34
192	Extraction of Jatropha curcas proteins and application in polyketone-based wood adhesives. <i>International Journal of Adhesion and Adhesives</i> , 2010 , 30, 615-625	3.4	34
191	Synthesis of fatty acid starch esters in supercritical carbon dioxide. <i>Carbohydrate Polymers</i> , 2010 , 82, 346-354	10.3	34
190	Two-phase (bio)catalytic reactions in a table-top centrifugal contact separator. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 3905-8	16.4	34
189	Catalytic Hydrotreatment of Humins in Mixtures of Formic Acid/2-Propanol with Supported Ruthenium Catalysts. <i>ChemSusChem</i> , 2016 , 9, 951-61	8.3	33
188	A metal-ligand cooperative pathway for intermolecular oxa-Michael additions to unsaturated nitriles. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 4236-40	16.4	33
187	Organolanthanide-induced carbon-carbon bond formation. Preparation and properties of monomeric lanthanide aldolates and enolates. <i>Organometallics</i> , 1992 , 11, 350-356	3.8	33
186	Biodiesel synthesis from Jatropha curcas L. oil and ethanol in a continuous centrifugal contactor separator. <i>European Journal of Lipid Science and Technology</i> , 2013 , 115, 123-131	3	32
185	Alkene isomerisation catalysed by a ruthenium PNN pincer complex. <i>Chemistry - A European Journal</i> , 2014 , 20, 15434-42	4.8	32
184	Synthesis of cationic cerium compounds [Cp*2Ce(L)2][BPh4] (L = tetrahydrofuran or tetrahydrothiophene) and the crystal structure of the tetrahydrothiophene derivative. <i>Journal of Organometallic Chemistry</i> , 1991 , 414, 351-359	2.3	32
183	Selective conversion of polyenes to monoenes by RuCl(3) -catalyzed transfer hydrogenation: the case of cashew nutshell liquid. <i>ChemSusChem</i> , 2012 , 5, 2427-34	8.3	31
182	Modeling and Experimental Studies on Phase and Chemical Equilibria in High-Pressure Methanol Synthesis. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 12233-12243	3.9	31
181	Catalytic hydrotreatment of Alcell lignin fractions using a Ru/C catalyst. <i>Catalysis Science and Technology</i> , 2016 , 6, 7053-7067	5.5	30
180	Synthesis of poly-(µ)-caprolactone grafted starch co-polymers by ring-opening polymerisation using silylated starch precursors. <i>Carbohydrate Polymers</i> , 2009 , 77, 267-275	10.3	30
179	Experimental Studies on the Carboxymethylation of Arrowroot Starch in Isopropanol-Water Media. <i>Starch/Staerke</i> , 2003 , 55, 495-503	2.3	30
178	Catalytic hydrotreatment of fast pyrolysis liquids in batch and continuous set-ups using a bimetallic Ni L u catalyst with a high metal content. <i>Catalysis Science and Technology</i> , 2016 , 6, 5899-5915	5.5	30

177	Hydrotreatment of Kraft Lignin to Alkylphenolics and Aromatics Using Ni, Mo, and W Phosphides Supported on Activated Carbon. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 2044-2055	8.3	30	
176	Green starch conversions: Studies on starch acetylation in densified CO2. <i>Carbohydrate Polymers</i> , 2010 , 82, 653-662	10.3	29	
175	Kinetic Studies on the Asymmetric Transfer Hydrogenation of Acetophenone Using a Homogeneous Ruthenium Catalyst with a Chiral Amino-Alcohol Ligand. <i>Organic Process Research and Development</i> , 2006 , 10, 423-429	3.9	29	
174	Optimization of Biodiesel Production over Chicken Eggshell-Derived CaO Catalyst in a Continuous Centrifugal Contactor Separator. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 12742-1275	5 3 .9	29	
173	The application of water-soluble ruthenium catalysts for the hydrogenation of the dichloromethane soluble fraction of fast pyrolysis oil and related model compounds in a two phase aqueousBrganic system. <i>Journal of Molecular Catalysis A</i> , 2007 , 277, 127-136		28	
172	Growth phase significantly decreases the DHA-to-EPA ratio in marine microalgae. <i>Aquaculture International</i> , 2017 , 25, 577-587	2.6	27	
171	Synthesis of Bio-aromatics from Black Liquors Using Catalytic Pyrolysis. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 3472-3480	8.3	26	
170	Ruthenium/1,1?-Bis(diphenylphosphino)ferrocene-Catalysed Oppenauer Oxidation of Alcohols and Lactonisation of #Diols using Methyl Isobutyl Ketone as Oxidant. <i>Advanced Synthesis and Catalysis</i> , 2013 , 355, 2839-2844	5.6	26	
169	Experimental Studies on the Hydrotreatment of Kraft Lignin to Aromatics and Alkylphenolics Using Economically Viable Fe-Based Catalysts. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 2668-2678	8.3	25	
168	Experimental and Modeling Studies on the Solubility of d-Arabinose, d-Fructose, d-Glucose, d-Mannose, Sucrose and d-Xylose in Methanol and Methanol Water Mixtures. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 8285-8290	3.9	25	
167	Environmental economics of lignin derived transport fuels. <i>Bioresource Technology</i> , 2017 , 243, 589-599	11	25	
166	Experimental and Modeling Studies on the Synthesis and Properties of Higher Fatty Esters of Corn Starch. <i>Starch/Staerke</i> , 2009 , 61, 69-80	2.3	25	
165	Mono-, bi-, and tri-metallic Ni-based catalysts for the catalytic hydrotreatment of pyrolysis liquids. <i>Biomass Conversion and Biorefinery</i> , 2017 , 7, 361-376	2.3	24	
164	Pt/ZrO Prepared by Atomic Trapping: An Efficient Catalyst for the Conversion of Glycerol to Lactic Acid with Concomitant Transfer Hydrogenation of Cyclohexene. <i>ACS Catalysis</i> , 2019 , 9, 9953-9963	13.1	24	
163	Manipulation of gas-liquid-liquid systems in continuous flow microreactors for efficient reaction processes. <i>Journal of Flow Chemistry</i> , 2020 , 10, 103-121	3.3	24	
162	Lewis Acid Catalyzed Conversion of 5-Hydroxymethylfurfural to 1,2,4-Benzenetriol, an Overlooked Biobased Compound. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 3419-3425	8.3	24	
161	Insight into structure-reactivity relationships for the iron-catalyzed hydrotreatment of technical lignins. <i>Bioresource Technology</i> , 2018 , 267, 93-101	11	24	
160	Exploratory Catalyst Screening Studies on the Base Free Conversion of Glycerol to Lactic Acid and Glyceric Acid in Water Using Bimetallic AuPt Nanoparticles on Acidic Zeolites. <i>Topics in Catalysis</i> , 2014 , 57, 1445-1453	2.3	24	

159	Oxidative dehydrogenation of ethylbenzene to styrene over alumina: effect of calcination. <i>Catalysis Science and Technology</i> , 2013 , 3, 519-526	5.5	24
158	Determination of the interfacial area of a continuous integrated mixer/separator (CINC) using a chemical reaction method. <i>Chemical Engineering and Processing: Process Intensification</i> , 2008 , 47, 1484-	14971	24
157	Novel monopentamethylcyclopentadienyl alkoxides of La and Ce; X-ray crystal structure of (C5Me5Ce(OCMe3)2)2. <i>Journal of Organometallic Chemistry</i> , 1989 , 364, 87-96	2.3	24
156	Transfer hydrogenation from glycerol over a Ni-Co/CeO2 catalyst: A highly efficient and sustainable route to produce lactic acid. <i>Applied Catalysis B: Environmental</i> , 2020 , 263, 118273	21.8	24
155	Catalysts design for higher alcohols synthesis by CO2 hydrogenation: Trends and future perspectives. <i>Applied Catalysis B: Environmental</i> , 2021 , 291, 120073	21.8	24
154	Making coke a more efficient catalyst in the oxidative dehydrogenation of ethylbenzene using wide-pore transitional aluminas. <i>Journal of Molecular Catalysis A</i> , 2014 , 381, 179-187		23
153	Explorative catalyst screening studies on reforming of glycerol in supercritical water. <i>Journal of Supercritical Fluids</i> , 2012 , 70, 171-181	4.2	23
152	A One-Step Synthesis of C6 Sugar Alcohols from Levoglucosan and Disaccharides Using a Ru/CMK-3 Catalyst. <i>ACS Catalysis</i> , 2016 , 6, 4411-4422	13.1	22
151	Improved homopolymer separation to enable the application of 1H NMR and HPLC for the determination of the reaction parameters of the graft copolymerization of acrylic acid onto starch. <i>Carbohydrate Research</i> , 2013 , 370, 38-45	2.9	22
150	Green Polymer Precursors from Biomass-Based Levulinic Acid. <i>Procedia Chemistry</i> , 2012 , 4, 260-267		22
149	Synthesis, Structure, and Reactivity of Rare-Earth Metallocene B-Propargyl/Allenyl Complexes. <i>Organometallics</i> , 2008 , 27, 5672-5683	3.8	22
148	Exploratory Studies on the Carboxymethylation of Cassava Starch in Water-miscible Organic Media. <i>Starch/Staerke</i> , 2004 , 56, 100-107	2.3	22
147	Support Screening Studies on the Hydrogenation of Levulinic Acid to Evalerolactone in Water Using Ru Catalysts. <i>Catalysts</i> , 2016 , 6, 131	4	22
146	The oxidative esterification of glycerol to methyl glycerate in methanol using gold on oxidic supports: an insight in product selectivity. <i>Green Chemistry</i> , 2012 , 14, 2031	10	21
145	Synthesis and properties of reactive interfacial agents for polycaprolactone-starch blends. <i>Journal of Applied Polymer Science</i> , 2009 , 114, 2315-2326	2.9	21
144	Multifunctional Heterogeneous Catalysts for the Selective Conversion of Glycerol into Methyl Lactate. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 10923-10933	8.3	21
143	Bench scale demonstration of the Supermethanol concept: The synthesis of methanol from glycerol derived syngas. <i>Chemical Engineering Journal</i> , 2012 , 207-208, 245-253	14.7	20
142	Use of soy proteins in polyketone-based wood adhesives. <i>International Journal of Adhesion and Adhesives</i> , 2010 , 30, 626-635	3.4	20

141	Experimental and modelling studies on the simultaneous absorption of NO and O2 in aqueous iron chelate solutions. <i>Chemical Engineering Science</i> , 2006 , 61, 6880-6891	4.4	20	
140	Cerium aryloxides as precursors for monopentamethylcyclpentadienyl organocerium(III) compounds; X-ray crystal structure of (B-pentamethylcyclopentadienyl)bis(2,6-di-t-butylphenoxo)cerium. <i>Journal of the Chemical Society</i>		20	
139	Highly Efficient Conversion of Xylose to Furfural in a WaterMIBK System Catalyzed by Magnetic Carbon-Based Solid Acid. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 17046-17056	3.9	20	
138	Valorization of Pyrolysis Liquids: Ozonation of the Pyrolytic Lignin Fraction and Model Components. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 4755-4765	8.3	20	
137	Experimental studies on a two-step fast pyrolysis-catalytic hydrotreatment process for hydrocarbons from microalgae (Nannochloropsis gaditana and Scenedesmus almeriensis). <i>Fuel Processing Technology</i> , 2020 , 206, 106466	7.2	19	
136	Condensation-Enhanced Self-Assembly as a Route to High Surface Area ⊞Aluminas. <i>Chemistry of Materials</i> , 2013 , 25, 3971-3978	9.6	19	
135	Synthesis and properties of highly branched Jatropha curcas L. oil derivatives. <i>European Journal of Lipid Science and Technology</i> , 2011 , 113, 18-30	3	19	
134	Flow distribution and mass transfer in a parallel microchannel contactor integrated with constructal distributors. <i>AICHE Journal</i> , 2009 , 56, NA-NA	3.6	19	
133	The rotor-stator type hydrodynamic cavitation reactor approach for enhanced biodiesel fuel production. <i>Fuel</i> , 2021 , 283, 118821	7.1	19	
132	Catalytic Hydrogenation of Renewable Levulinic Acid to EValerolactone: Insights into the Influence of Feed Impurities on Catalyst Performance in Batch and Flow Reactors. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 5903-5919	8.3	18	
131	Kinetic Studies on the Conversion of Levoglucosan to Glucose in Water Using Britisted Acids as the Catalysts. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 3204-3214	3.9	18	
130	High-Yield 5-Hydroxymethylfurfural Synthesis from Crude Sugar Beet Juice in a Biphasic Microreactor. <i>ChemSusChem</i> , 2019 , 12, 4304-4312	8.3	18	
129	Is it possible to increase the oil yield of catalytic pyrolysis of biomass? A study using commercially-available acid and basic catalysts in ex-situ and in-situ modus. <i>Journal of Analytical and Applied Pyrolysis</i> , 2019 , 137, 77-85	6	18	
128	Catalytic Liquefaction of Humin Substances from Sugar Biorefineries with Pt/C in 2-Propanol. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 469-480	8.3	17	
127	Synthesis of mixed alcohols with enhanced C3+ alcohol production by CO hydrogenation over potassium promoted molybdenum sulfide. <i>Applied Catalysis B: Environmental</i> , 2019 , 246, 232-241	21.8	17	
126	An improved catalytic pyrolysis concept for renewable aromatics from biomass involving a recycling strategy for co-produced polycyclic aromatic hydrocarbons. <i>Green Chemistry</i> , 2019 , 21, 3802-3806	10	17	
125	Synthesis and refining of sunflower biodiesel in a cascade of continuous centrifugal contactor separators. <i>European Journal of Lipid Science and Technology</i> , 2015 , 117, 242-254	3	17	
124	The Many Facets of Product Technology. <i>Chemical Engineering Research and Design</i> , 2004 , 82, 1411-142	4 5.5	17	

123	Hydrotreatment of the carbohydrate-rich fraction of pyrolysis liquids using bimetallic Ni based catalyst: Catalyst activity and product property relations. <i>Fuel Processing Technology</i> , 2018 , 169, 258-26	58 ^{7.2}	17
122	Detemplation of soft mesoporous silica nanoparticles with structural preservation. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 4747	13	16
121	A Metalligand Cooperative Pathway for Intermolecular Oxa-Michael Additions to Unsaturated Nitriles. <i>Angewandte Chemie</i> , 2015 , 127, 4310-4314	3.6	16
120	Process-product studies on starch acetylation reactions in pressurised carbon dioxide. <i>Starch/Staerke</i> , 2010 , 62, 566-576	2.3	16
119	ZnO nanorod arrays assembled on activated carbon fibers for photocatalytic degradation: Characteristics and synergistic effects. <i>Chemosphere</i> , 2020 , 261, 127731	8.4	16
118	Improving fast pyrolysis of lignin using three additives with different modes of action. <i>Green Chemistry</i> , 2020 , 22, 6471-6488	10	16
117	Triphenylphosphine-Based Covalent Organic Frameworks and Heterogeneous Rh-P-COFs Catalysts. <i>Chemistry - A European Journal</i> , 2020 , 26, 12134-12139	4.8	15
116	Experimental and modeling studies on the Ru/C catalyzed levulinic acid hydrogenation to Evalerolactone in packed bed microreactors. <i>Chemical Engineering Journal</i> , 2020 , 399, 125750	14.7	15
115	Synthesis and properties of cross-linked polymers from epoxidized rubber seed oil and triethylenetetramine. <i>Journal of Applied Polymer Science</i> , 2015 , 132, n/a-n/a	2.9	15
114	Binary, ternary and quaternary liquid[]quid equilibria in 1-butanol, oleic acid, water and n-heptane mixtures. <i>Fluid Phase Equilibria</i> , 2009 , 284, 71-79	2.5	15
113	Fast pyrolysis with fractional condensation of lignin-rich digested stillage from second-generation bioethanol production. <i>Journal of Analytical and Applied Pyrolysis</i> , 2020 , 145, 104756	6	15
112	A Comparative Study on the Reactivity of Various Ketohexoses to Furanics in Methanol. <i>ChemSusChem</i> , 2016 , 9, 1827-34	8.3	15
111	Bubble splitting under gas[]quid[]quid three-phase flow in a double T-junction microchannel. <i>AICHE Journal</i> , 2018 , 64, 376-388	3.6	15
110	Exploratory catalyst screening studies on the liquefaction of model humins from C6 sugars. <i>RSC Advances</i> , 2017 , 7, 5136-5147	3.7	14
109	Levulinic Acid from Biomass: Synthesis and Applications. <i>Biofuels and Biorefineries</i> , 2017 , 143-169	0.3	14
108	Catalytic hydrotreatment of pyrolytic lignins from different sources to biobased chemicals: Identification of feed-product relations. <i>Biomass and Bioenergy</i> , 2020 , 134, 105484	5.3	14
107	Synthesis of CaCO3 Nanoparticles by Carbonation of Lime Solutions in Reverse Micellar Systems. <i>Chemical Engineering Research and Design</i> , 2004 , 82, 1438-1443	5.5	14
106	Hydrotreatment of pyrolysis liquids derived from second-generation bioethanol production residues over NiMo and CoMo catalysts. <i>Biomass and Bioenergy</i> , 2019 , 126, 84-93	5.3	13

105	Structure-Mechanical and Thermal Properties Relationship of Novel Walerolactone-Based Polyurethanes. <i>Polymer-Plastics Technology and Engineering</i> , 2015 , 54, 234-245		13
104	CaCO(3) nanoparticle synthesis by carbonation of lime solution in microemulsion systems. <i>Nanotechnology</i> , 2007 , 18, 035607	3.4	13
103	Synthesis and ligand exchange reactions of (pentamethylcyclopentadienyl)lanthanum aryloxides. <i>Recueil Des Travaux Chimiques Des Pays-Bas</i> , 1990 , 109, 226-229		13
102	Ozone mediated depolymerization and solvolysis of technical lignins under ambient conditions in ethanol. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 265-276	5.8	13
101	Utilisation of Jatropha press cake as substrate in biomass and lipase production from Aspergillus niger 65I6 and Rhizomucor miehei CBS 360.62. <i>Biocatalysis and Agricultural Biotechnology</i> , 2017 , 9, 103-	1 67	12
100	Catalytic Hydrotreatment of the Pyrolytic Sugar and Pyrolytic Lignin Fractions of Fast Pyrolysis Liquids Using Nickel Based Catalysts. <i>Energies</i> , 2020 , 13, 285	3.1	12
99	Efficient Depolymerization of Lignin to Biobased Chemicals Using a Two-Step Approach Involving Ozonation in a Continuous Flow Microreactor Followed by Catalytic Hydrotreatment. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 18384-18394	8.3	12
98	Insights in starch acetylation in sub- and supercritical CO2. Carbohydrate Research, 2011, 346, 1224-31	2.9	12
97	Kinetic studies on the transesterification of sunflower oil with 1-butanol catalyzed by Rhizomucor miehei lipase in a biphasic aqueous-organic system. <i>Biochemical Engineering Journal</i> , 2016 , 114, 110-118	3 4.2	12
96	Enhanced C3+ alcohol synthesis from syngas using KCoMoSx catalysts: effect of the Co-Mo ratio on catalyst performance. <i>Applied Catalysis B: Environmental</i> , 2020 , 272, 118950	21.8	12
95	Effect of mixing on mass transfer characterization in continuous slugs and dispersed droplets in biphasic slug flow microreactors. <i>Chemical Engineering Journal</i> , 2021 , 406, 126885	14.7	12
94	Enzymatic Biodiesel Synthesis by the Biphasic Esterification of Oleic Acid and 1-Butanol in Microreactors. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 15432-15444	3.9	11
93	Thermal detemplation of SBA-15 mesophases. Effect of the activation protocol on the framework contraction. <i>Microporous and Mesoporous Materials</i> , 2013 , 176, 103-111	5.3	11
92	Experimental and modeling studies on the solubility of sub- and supercritical carbon dioxide (scCO2) in potato starch and derivatives. <i>Polymer Engineering and Science</i> , 2011 , 51, 28-36	2.3	11
91	Catalytic conversion of pure glycerol over an un-modified H-ZSM-5 zeolite to bio-based aromatics. <i>Applied Catalysis B: Environmental</i> , 2021 , 281, 119467	21.8	11
90	Experimental study and mass transfer modelling for extractive desulfurization of diesel with ionic liquid in microreactors. <i>Chemical Engineering Journal</i> , 2021 , 413, 127419	14.7	11
89	Bio-Based Chemicals: Selective Aerobic Oxidation of Tetrahydrofuran-2,5-dimethanol to Tetrahydrofuran-2,5-dicarboxylic Acid Using Hydrotalcite-Supported Gold Catalysts. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 4647-4656	8.3	10
88	In-depth structural characterization of the lignin fraction of a pine-derived pyrolysis oil. <i>Journal of Analytical and Applied Pyrolysis</i> , 2020 , 149, 104837	6	10

87	Highly efficient enantioselective liquid-liquid extraction of 1,2-amino-alcohols using SPINOL based phosphoric acid hosts. <i>Chemical Science</i> , 2017 , 8, 6409-6418	9.4	10
86	Hydrodynamics and local mass transfer characterization under gas[]quid[]quid slug flow in a rectangular microchannel. <i>AICHE Journal</i> , 2020 , 66, e16805	3.6	10
85	Experimental and modelling studies on the solvent assisted hydraulic pressing of dehulled rubber seeds. <i>Industrial Crops and Products</i> , 2016 , 92, 67-76	5.9	10
84	Reactivity studies in water on the acid-catalysed dehydration of psicose compared to other ketohexoses into 5-hydroxymethylfurfural. <i>Carbohydrate Research</i> , 2017 , 446-447, 1-6	2.9	9
83	Experimental studies on the ring opening polymerization of p-dioxanone using an Al(OiPr)3-monosaccharide initiator system. <i>European Polymer Journal</i> , 2009 , 45, 155-164	5.2	9
82	A rate based reactor model for BiodeNOx absorber units. Chemical Engineering Journal, 2007, 133, 165-	1 7 27	9
81	Process Intensification of Enzymatic Fatty Acid Butyl Ester Synthesis Using a Continuous Centrifugal Contactor Separator. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 470-482	3.9	9
8o	Biobased Chemicals: 1,2,4-Benzenetriol, Selective Deuteration and Dimerization to Bifunctional Aromatic Compounds. <i>Organic Process Research and Development</i> , 2018 , 22, 1663-1671	3.9	9
79	Base-free conversion of glycerol to methyl lactate using a multifunctional catalytic system consisting of AuPd nanoparticles on carbon nanotubes and Sn-MCM-41-XS. <i>Green Chemistry</i> , 2019 , 21, 4115-4126	10	8
78	Direct activation of microcrystalline zeolites. <i>Microporous and Mesoporous Materials</i> , 2013 , 171, 208-214	5.3	8
77	Experimental and Modeling Studies on the Conversion of Inulin to 5-Hydroxymethylfurfural Using Metal Salts in Water. <i>Catalysts</i> , 2015 , 5, 2287-2308	4	8
76	Valorization of humin type byproducts from pyrolytic sugar conversions to biobased chemicals. Journal of Analytical and Applied Pyrolysis, 2020 , 152, 104963	6	7
75	Proof of concept for continuous enantioselective liquid []quid extraction in capillary microreactors using 1-octanol as a sustainable solvent. <i>Green Chemistry</i> , 2017 , 19, 4334-4343	10	7
74	Screening of antioxidants as stabilisers for Jatropha curcas L. oil. <i>European Journal of Lipid Science and Technology</i> , 2013 , 115, 909-920	3	7
73	Selective tandem catalysis for the synthesis of 5-hydroxymethylfurfural from glucose over in-situ phosphated titania catalysts: Insights into structure, bi-functionality and performance in flow microreactors. <i>Applied Catalysis B: Environmental</i> , 2022 , 301, 120800	21.8	7
72	Experimental and modeling studies on the acid-catalyzed conversion of inulin to 5-hydroxymethylfurfural in water. <i>Chemical Engineering Research and Design</i> , 2016 , 109, 65-75	5.5	7
71	Catalytic Conversion of Free Fatty Acids to Bio-Based Aromatics: A Model Investigation Using Oleic Acid and an H-ZSM-5/AlO Catalyst. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 1128-1141	8.3	7
70	Hot-spots during the calcination of MCM-41: A SAXS comparative analysis of a soft mesophase. <i>Materials Letters</i> , 2014 , 118, 51-54	3.3	6

(2020-2012)

69	Optimization Studies on the Hydro-acylation of 1-Alkenes to Methylketones using a Homogeneous Palladium/Josiphos Catalyst. <i>Organic Process Research and Development</i> , 2012 , 16, 400-	4 0 89	6	
68	Investigation of Enhanced Gas Absorption by Adsorptive Bucky Balls in a Multiphase Slurry Reactor in the Presence and Absence of Ultrasound. <i>Industrial & Engineering Chemistry Research</i> , 2002 , 41, 1496-1503	3.9	6	
67	Aerobic oxidation of benzyl alcohol in a slug flow microreactor: Influence of liquid film wetting on mass transfer. <i>AICHE Journal</i> , 2020 , 66, e17005	3.6	6	
66	Hydrothermal liquefaction versus catalytic hydrodeoxygenation of a bioethanol production stillage residue to platform chemicals: A comparative study. <i>Fuel Processing Technology</i> , 2021 , 213, 106654	7.2	6	
65	Diels?Alder-Crosslinked Polymers Derived from Jatropha Oil. <i>Polymers</i> , 2018 , 10,	4.5	6	
64	Modelling studies of enantioselective extraction of an amino acid derivative in slug flow capillary microreactors. <i>Chemical Engineering Journal</i> , 2018 , 354, 378-392	14.7	5	
63	Application of metal triflate catalysts for the trans-esterification of Jatropha curcas L. oil with methanol and higher alcohols. <i>JAOCS, Journal of the American Oil Chemistsi Society</i> , 2014 , 91, 325-336	1.8	5	
62	Chemical modifications of Sterculia foetida L. oil to branched ester derivatives. <i>European Journal of Lipid Science and Technology</i> , 2012 , 114, 31-48	3	5	
61	Techno-Economic Analysis for Small Scale Production of Rubber Seed Oil and Biodiesel in Palangkaraya, Indonesia. <i>Journal of Clean Energy Technologies</i> , 2017 , 5, 268-273	0.2	5	
60	Sugar dehydration to 5-hydroxymethylfurfural in mixtures of water/[Bmim]Cl catalyzed by iron sulfate. <i>New Journal of Chemistry</i> , 2020 , 44, 16877-16890	3.6	5	
59	CO2 Hydrogenation to Higher Alcohols over K-Promoted Bimetallic FeIh Catalysts on a CeIlrO2 Support. ACS Sustainable Chemistry and Engineering, 2021, 9, 6235-6249	8.3	5	
58	Efficient Conversion of Glucose to 5-Hydroxymethylfurfural over a Sn-Modified SAPO-34 Zeolite Catalyst. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 5838-5851	3.9	5	
57	Mass transfer and reaction characteristics of homogeneously catalyzed aerobic oxidation of 5-hydroxymethylfurfural in slug flow microreactors. <i>Chemical Engineering Journal</i> , 2021 , 413, 127552	14.7	5	
56	Tunable HMF hydrogenation to furan diols in a flow reactor using Ru/C as catalyst. <i>Journal of Industrial and Engineering Chemistry</i> , 2021 , 100, 390.e1-390.e9	6.3	5	
55	Catalytic conversion of glycerol to bio-based aromatics using H-ZSM-5 in combination with various binders. <i>Fuel Processing Technology</i> , 2021 , 221, 106944	7.2	5	
54	Kinetics of long chain n-paraffin dehydrogenation over a commercial Pt-Sn-K-Mg/EAl2O3 catalyst: Model studies using n-dodecane. <i>Applied Catalysis A: General</i> , 2019 , 579, 130-140	5.1	4	
53	Experimental and modelling studies on the uncatalysed thermal conversion of inulin to 5-hydroxymethylfurfural and levulinic acid. <i>Sustainable Chemical Processes</i> , 2015 , 3,		4	
52	A Two-Step Approach for the Conversion of Technical Lignins to Biofuels. <i>Advanced Sustainable Systems</i> , 2020 , 4, 1900147	5.9	4	

51	The influence of storage time on relevant product properties of rubber seeds, rubber seed oil and rubber seed oil ethyl esters. <i>Sustainable Chemical Processes</i> , 2016 , 4,		4
50	Biofuel and Methyl Levulinate from Biomass-Derived Fractional Condensed Pyrolysis Oil and Alcohol. <i>Energy Technology</i> , 2017 , 5, 205-215	3.5	4
49	Improved catalyst formulations for the conversion of glycerol to bio-based aromatics. <i>Applied Catalysis A: General</i> , 2021 , 629, 118393	5.1	4
48	Hydrogenation of Biobased Aldehydes to Monoalcohols Using Bimetallic Catalysts. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 11994-12004	8.3	4
47	Catalyst Performance Studies on the Guerbet Reaction in a Continuous Flow Reactor Using Mono- and Bi-Metallic Cu-Ni Porous Metal Oxides. <i>Catalysts</i> , 2020 , 10, 996	4	4
46	Pyrolytic lignin: a promising biorefinery feedstock for the production of fuels and valuable chemicals. <i>Green Chemistry</i> ,	10	4
45	Rheological behavior of reaction mixtures during the graft copolymerization of cassava starch with acrylic acid. <i>Polymer Engineering and Science</i> , 2017 , 57, 1285-1292	2.3	3
44	Biobased Furanics: Kinetic Studies on the Acid Catalyzed Decomposition of 2-Hydroxyacetyl Furan in Water Using Br\(\text{B}\)sted Acid Catalysts. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 3993-4001	8.3	3
43	Synthesis, characterization and properties of a glycol-coordinated $\bar{\mu}$ -Keggin-type Al chloride. <i>Chemical Communications</i> , 2018 , 54, 4148-4151	5.8	3
42	Synthesis of sago starch laurate in densified carbon dioxide. <i>Polymer Engineering and Science</i> , 2018 , 58, 291-299	2.3	3
41	Conversion of levoglucosan to glucose using an acidic heterogeneous Amberlyst 16 catalyst: Kinetics and packed bed measurements. <i>Chemical Engineering Research and Design</i> , 2019 , 152, 193-200	5.5	3
40	Proof of principle for the synthesis of hydroxy-aryl esters of glycosidic polyols and non-reducing oligosaccharides with subsequent enzymatic coupling to a tyrosine-containing tripeptide. <i>Carbohydrate Research</i> , 2011 , 346, 1005-12	2.9	3
39	Physicochemical Phenomena in the Roasting of Cocoa (Theobroma cacao L.). <i>Food Engineering Reviews</i> ,1	6.5	3
38	Towards Thermally Reversible Networks Based on Furan-Functionalization of Jatropha Oil. <i>Molecules</i> , 2020 , 25,	4.8	3
37	Efficient depolymerization of lignins to alkylphenols using phosphided NiMo catalysts. <i>Catalysis Science and Technology</i> ,	5.5	3
36	Stabilization of fast pyrolysis liquids from biomass by catalytic hydrotreatment using Raney nickel Bypeltatalysts. <i>Fuel Processing Technology</i> , 2021 , 219, 106846	7.2	3
35	Mechanistic Investigations into the Catalytic Levulinic Acid Hydrogenation, Insight in H/D Exchange Pathways, and a Synthetic Route to d8-EValerolactone. <i>ACS Catalysis</i> , 2021 , 11, 10467-10477	13.1	3
34	Biorefining of Pigeon Pea: Residue Conversion by Pyrolysis. <i>Energies</i> , 2020 , 13, 2778	3.1	2

33	Mild Upgrading of Bio-Crude Pyrolysis Oil: A Concept Based on Bio-Based Alcohols with Selective Water Adsorption. <i>Energy Technology</i> , 2018 , 6, 1209-1213	3.5	2	
32	Recent developments in the catalytic hydrotreatment of pyrolysis liquids 2018 , 249-292		2	
31	CHAPTER 7:Catalytic Hydrotreatment of Fast Pyrolysis Oils Using Supported Metal Catalysts. <i>RSC Energy and Environment Series</i> , 2014 , 151-173	0.6	2	
30	Research progress on furfural residues recycling: A literature review 2010 ,		2	
29	Efficient synthesis of furfural from xylose over HCl catalyst in slug flow microreactors promoted by NaCl addition. <i>AICHE Journal</i> ,	3.6	2	
28	Catalytic co-conversion of glycerol and oleic acid to bio-aromatics: Catalyst deactivation studies for a technical H-ZSM-5/Al2O3 catalyst. <i>Applied Catalysis A: General</i> , 2022 , 632, 118486	5.1	2	
27	A time- and space-resolved catalyst deactivation study on the conversion of glycerol to aromatics using H-ZSM-5. <i>Chemical Engineering Journal</i> , 2022 , 434, 134620	14.7	2	
26	Ex Situ Catalytic Fast Pyrolysis of Lignin-Rich Digested Stillage over Na/ZSM-5, H/ZSM-5, and Fe/ZSM-5. <i>Energy & Digested Stillage over Na/ZSM-5</i> . <i>Energy & Digested Stillage over Na/ZSM-5</i> .	4.1	2	
25	Experimental and modelling studies on continuous synthesis and refining of biodiesel in a dedicated bench scale unit using centrifugal contactor separator technology. <i>European Journal of Lipid Science and Technology</i> , 2016 , 118, 938-948	3	2	
24	The protein challenge: matching future demand and supply in Indonesia. <i>Biofuels, Bioproducts and Biorefining</i> , 2021 , 15, 341-356	5.3	2	
23	5-Hydroxy-2-Methylfurfural from Sugar Beet Thick Juice: Kinetic and Modeling Studies. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 2626-2638	8.3	2	
22	Biodiesel fuel purification in a continuous centrifugal contactor separator: An environmental-friendly approach. <i>Sustainable Energy Technologies and Assessments</i> , 2021 , 47, 101511	4.7	2	
21	Continuous Solid Particle Flow in Microreactors for Efficient Chemical Conversion. <i>Industrial & Engineering Chemistry Research</i> ,	3.9	2	
20	A Systematic Study on the Utilization of Inorganic Salts as Catalyst for the Conversion of Xylose to Furfural. <i>IOP Conference Series: Materials Science and Engineering</i> , 2020 , 742, 012049	0.4	1	
19	Catalytic conversion of glycerol and co-feeds (fatty acids, alcohols, and alkanes) to bio-based aromatics: remarkable and unprecedented synergetic effects on catalyst performance <i>Green Chemistry</i> , 2022 , 24, 941-949	10	1	
18	Gas Liquid Slug Flow Studies in Microreactors: Effect of Nanoparticle Addition on Flow Pattern and Pressure Drop. <i>Frontiers in Chemical Engineering</i> , 2022 , 3,	1	1	
17	Experimental studies on a combined pyrolysis/staged condensation/hydrotreatment approach to obtain biofuels and biobased chemicals. <i>Fuel Processing Technology</i> , 2022 , 228, 107160	7.2	1	
16	Optimization of operational and design parameters of a Simultaneous Mixer-Separator for enhanced continuous biodiesel production. <i>Chemical Product and Process Modeling</i> , 2021 , 16, 155-167	1.1	1	

15	Evaluation of Analysis Methods for Formaldehyde, Acetaldehyde, and Furfural from Fast Pyrolysis Bio-oil. <i>Energy & Dio-oil. Energy & Dio-o</i>	4.1	1
14	Iron Tetrasulfonatophthalocyanine-Catalyzed Starch Oxidation Using HO: Interplay between Catalyst Activity, Selectivity, and Stability. <i>ACS Omega</i> , 2021 , 6, 13847-13857	3.9	1
13	Catalytic conversion of furfural extract from lubricating oil extraction unit over the shaped and promoted HY catalysts to valuable petroleum products. <i>Catalysis Communications</i> , 2020 , 134, 105834	3.2	1
12	Catalytic upcycling paper sludge for the recovery of minerals and production of renewable high-grade biofuels and bio-based chemicals. <i>Chemical Engineering Journal</i> , 2021 , 420, 129714	14.7	1
11	Bio-Based Aromatic Polyesters Reversibly Crosslinked via the DielsAlder Reaction. <i>Applied Sciences</i> (Switzerland), 2022 , 12, 2461	2.6	1
10	Enhanced Catalytic Depolymerization of a Kraft Lignin by a Mechanochemical Approach. <i>Energy</i> & amp; Fuels,	4.1	1
9	Green process intensification using microreactor technology for the synthesis of biobased chemicals and fuels. <i>Chemical Engineering and Processing: Process Intensification</i> , 2022 , 109002	3.7	1
8	CO hydrogenation over K-Co-MoSx catalyst to mixed alcohols: A kinetic analysis. <i>International Journal of Chemical Kinetics</i> , 2021 , 53, 419-427	1.4	Ο
7	Valorization potential of technical lignins from Norway spruce (Picea abies) via pyrolysis. <i>Journal of Analytical and Applied Pyrolysis</i> , 2022 , 105549	6	0
6	Transesterification of sago starch and waste palm cooking oil in densified CO2. <i>IOP Conference Series: Materials Science and Engineering</i> , 2017 , 223, 012055	0.4	
5	Polymeric Blends with Biopolymers 2013 , 143-171		
4	Catalytic liquefaction of sewage sludge to small molecular weight chemicals. <i>Scientific Reports</i> , 2020 , 10, 18929	4.9	
3	Catalytic Hydrotreatment of Humins in Mixtures of Formic Acid/2-Propanol with Supported Ruthenium Catalysts. <i>ChemSusChem</i> , 2016 , 9, 902-902	8.3	
2	Preparation of reducing sugars from corncob by solid acid catalytic pretreatment combined with in situ enzymatic hydrolysis. <i>Biomass Conversion and Biorefinery</i> ,1	2.3	
1	Torque measurement as a tool to monitor the breakdown of cassava starch gels, by the effect of Fenton's initiator for graft copolymerization. <i>Results in Chemistry</i> , 2022 , 4, 100314	2.1	