Janet L Stanford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/29930/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Multiple-Testing Procedure for High-Dimensional Mediation Hypotheses. Journal of the American Statistical Association, 2022, 117, 198-213.	1.8	30
2	Genetic factors associated with prostate cancer conversion from active surveillance to treatment. Human Genetics and Genomics Advances, 2022, 3, 100070.	1.0	10
3	A Rare Germline HOXB13 Variant Contributes to Risk of Prostate Cancer in Men of African Ancestry. European Urology, 2022, 81, 458-462.	0.9	22
4	Prostate cancer risk stratification improvement across multiple ancestries with new polygenic hazard score. Prostate Cancer and Prostatic Diseases, 2022, 25, 755-761.	2.0	14
5	Methylation Subtypes of Primary Prostate Cancer Predict Poor Prognosis. Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 1473-1482.	1.1	4
6	Two-stage Study of Familial Prostate Cancer by Whole-exome Sequencing and Custom Capture Identifies 10 Novel Genes Associated with the Risk of Prostate Cancer. European Urology, 2021, 79, 353-361.	0.9	28
7	Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction. Nature Genetics, 2021, 53, 65-75.	9.4	264
8	Additional SNPs improve risk stratification of a polygenic hazard score for prostate cancer. Prostate Cancer and Prostatic Diseases, 2021, 24, 532-541.	2.0	16
9	Polygenic hazard score is associated with prostate cancer in multi-ethnic populations. Nature Communications, 2021, 12, 1236.	5.8	40
10	A rare variant in <scp><i>EZH2</i></scp> is associated with prostate cancer risk. International Journal of Cancer, 2021, 149, 1089-1099.	2.3	9
11	Discovery and fine-mapping of height loci via high-density imputation of GWASs in individuals of African ancestry. American Journal of Human Genetics, 2021, 108, 564-582.	2.6	18
12	KLK3 SNP–SNP interactions for prediction of prostate cancer aggressiveness. Scientific Reports, 2021, 11, 9264.	1.6	5
13	Marital status and prostate cancer incidence: a pooled analysis of 12 case–control studies from the PRACTICAL consortium. European Journal of Epidemiology, 2021, 36, 913-925.	2.5	23
14	Rare Germline Variants in ATM Predispose to Prostate Cancer: A PRACTICAL Consortium Study. European Urology Oncology, 2021, 4, 570-579.	2.6	38
15	An integrative multi-omics analysis to identify candidate DNA methylation biomarkers related to prostate cancer risk. Nature Communications, 2020, 11, 3905.	5.8	28
16	The CHEK2 Variant C.349A>G Is Associated with Prostate Cancer Risk and Carriers Share a Common Ancestor. Cancers, 2020, 12, 3254.	1.7	16
17	A Germline Variant at 8q24 Contributes to Familial Clustering of Prostate Cancer in Men of African Ancestry. European Urology, 2020, 78, 316-320.	0.9	32
18	Copy number alterations are associated with metastatic-lethal progression in prostate cancer. Prostate Cancer and Prostatic Diseases, 2020, 23, 494-506.	2.0	12

#	Article	IF	CITATIONS
19	A fourâ€gene transcript score to predict metastaticâ€lethal progression in men treated for localized prostate cancer: Development and validation studies. Prostate, 2019, 79, 1589-1596.	1.2	8
20	Shared heritability and functional enrichment across six solid cancers. Nature Communications, 2019, 10, 431.	5.8	88
21	Vigorous Physical Activity Is Associated with Lower Risk of Metastatic–Lethal Progression in Prostate Cancer and Hypomethylation in the <i>CRACR2A</i> Gene. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 258-264.	1.1	20
22	Circulating Metabolic Biomarkers of Screen-Detected Prostate Cancer in the ProtecT Study. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 208-216.	1.1	21
23	DNA methylation profiles in African American prostate cancer patients in relation to disease progression. Genomics, 2019, 111, 10-16.	1.3	30
24	Genetic Mechanisms of Immune Evasion in Colorectal Cancer. Cancer Discovery, 2018, 8, 730-749.	7.7	367
25	Combining multiple biomarkers linearly to maximize the partial area under the ROC curve. Statistics in Medicine, 2018, 37, 627-642.	0.8	21
26	Patient Reported Comparative Effectiveness of Contemporary Intensity Modulated Radiation Therapy Versus External Beam Radiation Therapy ofÂthe Mid 1990s for Localized Prostate Cancer. Urology Practice, 2018, 5, 471-479.	0.2	1
27	Germline variation at 8q24 and prostate cancer risk in men of European ancestry. Nature Communications, 2018, 9, 4616.	5.8	43
28	A five pG DNA methylation score to predict metastaticâ€lethal outcomes in men treated with radical prostatectomy for localized prostate cancer. Prostate, 2018, 78, 1084-1091.	1.2	16
29	AA9int: SNP interaction pattern search using non-hierarchical additive model set. Bioinformatics, 2018, 34, 4141-4150.	1.8	3
30	Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nature Genetics, 2018, 50, 928-936.	9.4	652
31	Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants. Nature Communications, 2018, 9, 2256.	5.8	88
32	SNP interaction pattern identifier (SIPI): an intensive search for SNP–SNP interaction patterns. Bioinformatics, 2017, 33, 822-833.	1.8	11
33	Epigenome-Wide Tumor DNA Methylation Profiling Identifies Novel Prognostic Biomarkers of Metastatic-Lethal Progression in Men Diagnosed with Clinically Localized Prostate Cancer. Clinical Cancer Research, 2017, 23, 311-319.	3.2	65
34	Gene expression panel predicts metastaticâ€lethal prostate cancer outcomes in men diagnosed with clinically localized prostate cancer. Molecular Oncology, 2017, 11, 140-150.	2.1	24
35	Generating Exome Enriched Sequencing Libraries from Formalinâ€Fixed, Paraffinâ€Embedded Tissue DNA for Nextâ€Generation Sequencing. Current Protocols in Human Genetics, 2017, 92, 18.10.1-18.10.25.	3.5	3
36	Height, selected genetic markers and prostate cancer risk: results from the PRACTICAL consortium. British Journal of Cancer, 2017, 117, 734-743.	2.9	7

#	Article	lF	CITATIONS
37	Investigating the possible causal role of coffee consumption with prostate cancer risk and progression using Mendelian randomization analysis. International Journal of Cancer, 2017, 140, 322-328.	2.3	17
38	Calcium Channel Blocker Use and Risk of Prostate Cancer by <i>TMPRSS2:ERG</i> Gene Fusion Status. Prostate, 2017, 77, 282-290.	1.2	18
39	Alcohol consumption and prostate cancer incidence and progression: A Mendelian randomisation study. International Journal of Cancer, 2017, 140, 75-85.	2.3	28
40	Two Novel Susceptibility Loci for Prostate Cancer in Men of African Ancestry. Journal of the National Cancer Institute, 2017, 109, .	3.0	57
41	Gene expression signature of Gleason score is associated with prostate cancer outcomes in a radical prostatectomy cohort. Oncotarget, 2017, 8, 43035-43047.	0.8	35
42	Whole exome sequencing in 75 high-risk families with validation and replication in independent case-control studies identifies <i>TANGO2</i> , <i>OR5H14</i> , and <i>CHAD</i> as new prostate cancer susceptibility genes. Oncotarget, 2017, 8, 1495-1507.	0.8	11
43	Discovery and fine-mapping of adiposity loci using high density imputation of genome-wide association studies in individuals of African ancestry: African Ancestry Anthropometry Genetics Consortium. PLoS Genetics, 2017, 13, e1006719.	1.5	98
44	Quantitative comparison and reproducibility of pathologist scoring and digital image analysis of estrogen receptor β2 immunohistochemistry in prostate cancer. Diagnostic Pathology, 2016, 11, 63.	0.9	34
45	<i>Trichomonas vaginalis</i> infection and risk of advanced prostate cancer. Prostate, 2016, 76, 620-623.	1.2	22
46	<i>PALB2</i> , <i>CHEK2</i> and <i>ATM</i> rare variants and cancer risk: data from COGS. Journal of Medical Genetics, 2016, 53, 800-811.	1.5	174
47	Epigenetic signature of Gleason score and prostate cancer recurrence after radical prostatectomy. Clinical Epigenetics, 2016, 8, 97.	1.8	34
48	Biallelic BRCA2 Mutations Shape the Somatic Mutational Landscape of Aggressive Prostate Tumors. American Journal of Human Genetics, 2016, 98, 818-829.	2.6	34
49	A Meta-analysis of Multiple Myeloma Risk Regions in African and European Ancestry Populations Identifies Putatively Functional Loci. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 1609-1618.	1.1	18
50	REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants. American Journal of Human Genetics, 2016, 99, 877-885.	2.6	1,555
51	Polyunsaturated fatty acids and prostate cancer risk: a Mendelian randomisation analysis from the PRACTICAL consortium. British Journal of Cancer, 2016, 115, 624-631.	2.9	23
52	Assessing the role of insulinâ€like growth factors and binding proteins in prostate cancer using Mendelian randomization: Genetic variants as instruments for circulating levels. International Journal of Cancer, 2016, 139, 1520-1533.	2.3	26
53	Blood lipids and prostate cancer: a Mendelian randomization analysis. Cancer Medicine, 2016, 5, 1125-1136.	1.3	68
54	Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types. Cancer Discovery, 2016, 6, 1052-1067.	7.7	157

#	Article	IF	CITATIONS
55	Prostate cancer risk regions at 8q24 and 17q24 are differentially associated with somatic <i>TMPRSS2:ERG</i> fusion status. Human Molecular Genetics, 2016, 25, ddw349.	1.4	8
56	Atlas of prostate cancer heritability in European and African-American men pinpoints tissue-specific regulation. Nature Communications, 2016, 7, 10979.	5.8	50
57	Prostate tumor DNA methylation is associated with cigarette smoking and adverse prostate cancer outcomes. Cancer, 2016, 122, 2168-2177.	2.0	47
58	Genome-wide association of familial prostate cancer cases identifies evidence for a rare segregating haplotype at 8q24.21. Human Genetics, 2016, 135, 923-938.	1.8	37
59	Pubertal development and prostate cancer risk: Mendelian randomization study in a population-based cohort. BMC Medicine, 2016, 14, 66.	2.3	42
60	Successful external validation of a model to predict other cause mortality in localized prostate cancer. BMC Medicine, 2016, 14, 25.	2.3	22
61	Prostate Cancer Expression Profiles of Cytoplasmic ERβ1 and Nuclear ERβ2 are Associated with Poor Outcomes following Radical Prostatectomy. Journal of Urology, 2016, 195, 1760-1766.	0.2	12
62	The Comparative Harms of Open and Robotic Prostatectomy in Population Based Samples. Journal of Urology, 2016, 195, 321-329.	0.2	50
63	Epigenomic profiling of prostate cancer identifies differentially methylated genes in TMPRSS2:ERG fusion-positive versus fusion-negative tumors. Clinical Epigenetics, 2015, 7, 128.	1.8	35
64	Epigenomic profiling of DNA methylation in paired prostate cancer versus adjacent benign tissue. Prostate, 2015, 75, 1941-1950.	1.2	44
65	Prediction of individual genetic risk to prostate cancer using a polygenic score. Prostate, 2015, 75, 1467-1474.	1.2	54
66	Expression of cell cycle-regulated genes and prostate cancer prognosis in a population-based cohort. Prostate, 2015, 75, 1354-1362.	1.2	16
67	Methodological Considerations in Estimation of Phenotype Heritability Using Genome-Wide SNP Data, Illustrated by an Analysis of the Heritability of Height in a Large Sample of African Ancestry Adults. PLoS ONE, 2015, 10, e0131106.	1.1	2
68	A Large-Scale Analysis of Genetic Variants within Putative miRNA Binding Sites in Prostate Cancer. Cancer Discovery, 2015, 5, 368-379.	7.7	56
69	A Genome-wide Pleiotropy Scan for Prostate Cancer Risk. European Urology, 2015, 67, 649-657.	0.9	21
70	The Evolution of Self-Reported Urinary and Sexual Dysfunction over the Last Two Decades: Implications for Comparative Effectiveness Research. European Urology, 2015, 67, 1019-1025.	0.9	15
71	Integration of multiethnic fine-mapping and genomic annotation to prioritize candidate functional SNPs at prostate cancer susceptibility regions. Human Molecular Genetics, 2015, 24, 5603-5618.	1.4	50
72	Risk Analysis of Prostate Cancer in PRACTICAL, a Multinational Consortium, Using 25 Known Prostate Cancer Susceptibility Loci. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1121-1129.	1.1	56

#	Article	IF	CITATIONS
73	Two susceptibility loci identified for prostate cancer aggressiveness. Nature Communications, 2015, 6, 6889.	5.8	88
74	The effects of height and BMI on prostate cancer incidence and mortality: a Mendelian randomization study in 20,848 cases and 20,214 controls from the PRACTICAL consortium. Cancer Causes and Control, 2015, 26, 1603-1616.	0.8	77
75	Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans. Human Molecular Genetics, 2015, 24, 5589-5602.	1.4	67
76	Genome-Wide Association Study of Prostate Cancer–Specific Survival. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1796-1800.	1.1	27
77	Prediction of Long-term Other-cause Mortality in Men With Early-stage Prostate Cancer: Results From the Prostate Cancer Outcomes Study. Urology, 2015, 85, 92-100.	0.5	34
78	Genetic predisposition to prostate cancer: Update and future perspectives. Urologic Oncology: Seminars and Original Investigations, 2015, 33, 75-84.	0.8	26
79	Fine-Mapping the HOXB Region Detects Common Variants Tagging a Rare Coding Allele: Evidence for Synthetic Association in Prostate Cancer. PLoS Genetics, 2014, 10, e1004129.	1.5	34
80	Validation Study of Genes with Hypermethylated Promoter Regions Associated with Prostate Cancer Recurrence. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 1331-1339.	1.1	34
81	Diet and lifestyle factors and risk of subtypes of esophageal and gastric cancers: classification tree analysis. Annals of Epidemiology, 2014, 24, 50-57.	0.9	50
82	Leveraging population admixture to characterize the heritability of complex traits. Nature Genetics, 2014, 46, 1356-1362.	9.4	69
83	A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nature Genetics, 2014, 46, 1103-1109.	9.4	408
84	Dense genome-wide SNP linkage scan in 301 hereditary prostate cancer families identifies multiple regions with suggestive evidence for linkage. Human Molecular Genetics, 2009, 18, 1839-1848.	1.4	25
85	Statin Use and Risk of Prostate Cancer: Results from a Population-based Epidemiologic Study. American Journal of Epidemiology, 2008, 168, 250-260.	1.6	143
86	Prostate cancer and genetic susceptibility: A genome scan incorporating disease aggressiveness. Prostate, 2006, 66, 317-325.	1.2	45
87	Association of HPC2/ELAC2 polymorphisms with risk of prostate cancer in a population-based study. Cancer Epidemiology Biomarkers and Prevention, 2003, 12, 876-81.	1.1	11
88	A polymorphism in the CYP17 gene and risk of prostate cancer. Cancer Epidemiology Biomarkers and Prevention, 2002, 11, 243-7.	1.1	28
89	Quality-of-Life Outcomes After Primary Androgen Deprivation Therapy: Results From the Prostate Cancer Outcomes Study. Journal of Clinical Oncology, 2001, 19, 3750-3757.	0.8	244
90	The association of fatty acids with prostate cancer risk. Prostate, 2001, 47, 262-268.	1.2	105

#	Article	IF	CITATIONS
91	Polymorphic repeats in the androgen receptor gene in high-risk sibships. Prostate, 2001, 48, 200-205.	1.2	43
92	Germline mutations in the p73 gene do not predispose to familial prostate-brain cancer. Prostate, 2001, 48, 292-296.	1.2	29
93	Family history of cancer and risk of esophageal and gastric cancers in the United States. International Journal of Cancer, 2001, 93, 148-152.	2.3	127
94	The association of fatty acids with prostate cancer risk. , 2001, 47, 262.		3
95	Linkage analysis of 150 high-risk prostate cancer families at 1q24-25. , 2000, 18, 251-275.		43
96	Hormone replacement therapy in relation to risk of lobular and ductal breast carcinoma in middle-aged women. Cancer, 2000, 88, 2570-2577.	2.0	179
97	Hormone replacement therapy in relation to risk of lobular and ductal breast carcinoma in middle-aged women. , 2000, 88, 2570.		2
98	Seasonal trends in the self-detection of breast cancer: indications from the Cancer and Steroid Hormone (CASH) study. Breast Cancer Research and Treatment, 1997, 42, 187-192.	1.1	10
99	Oral Contraceptive Use and Risk of Breast Cancer in Middle-aged Women. American Journal of Epidemiology, 1996, 144, 161-164.	1.6	16
100	Do alcohol intake and mammographic densities interact in regard to the risk of breast cancer?. Cancer, 1993, 71, 3029-3035.	2.0	20
101	Oral contraceptives and endometrial cancer: Do other risk factors modify the association?. International Journal of Cancer, 1993, 54, 243-248.	2.3	46
102	Longâ€ŧerm storage of red blood cells and correlations between red cell and dietary fatty acids: Results from a pilot study. Nutrition and Cancer, 1991, 16, 183-188.	0.9	52
103	Combined oral contraceptives and liver cancer. International Journal of Cancer, 1989, 43, 254-259.	2.3	73