
Pascal Van Der Voort

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2992880/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mixed-metal metal–organic frameworks. Chemical Society Reviews, 2019, 48, 2535-2565.	18.7	474
2	Periodic Mesoporous Organosilicas: from simple to complex bridges; a comprehensive overview of functions, morphologies and applications. Chemical Society Reviews, 2013, 42, 3913-3955.	18.7	444
3	A Detailed Study of Thermal, Hydrothermal, and Mechanical Stabilities of a Wide Range of Surfactant Assembled Mesoporous Silicas. Chemistry of Materials, 2002, 14, 2317-2324.	3.2	325
4	Technologies for Arsenic Removal from Water: Current Status and Future Perspectives. International Journal of Environmental Research and Public Health, 2016, 13, 62.	1.2	320
5	A New Templated Ordered Structure with Combined Micro- and Mesopores and Internal Silica Nanocapsules. Journal of Physical Chemistry B, 2002, 106, 5873-5877.	1.2	286
6	Systematic study of the chemical and hydrothermal stability of selected "stable―Metal Organic Frameworks. Microporous and Mesoporous Materials, 2016, 226, 110-116.	2.2	277
7	Strongly Reducing (Diarylamino)benzene-Based Covalent Organic Framework for Metal-Free Visible Light Photocatalytic H ₂ O ₂ Generation. Journal of the American Chemical Society, 2020, 142, 20107-20116.	6.6	239
8	Review of catalytic systems and thermodynamics for the Guerbet condensation reaction and challenges for biomass valorization. Catalysis Science and Technology, 2015, 5, 3876-3902.	2.1	223
9	A General Strategy for the Synthesis of Functionalised UiOâ€66 Frameworks: Characterisation, Stability and CO ₂ Adsorption Properties. European Journal of Inorganic Chemistry, 2013, 2013, 2154-2160.	1.0	199
10	Latent olefin metathesis catalysts. Chemical Society Reviews, 2009, 38, 3360.	18.7	186
11	Synthesis, Crystal Structures, and Luminescence Properties of Carboxylate Based Rare-Earth Coordination Polymers. Inorganic Chemistry, 2012, 51, 11623-11634.	1.9	177
12	Missing Linkers: An Alternative Pathway to UiO-66 Electronic Structure Engineering. Chemistry of Materials, 2017, 29, 3006-3019.	3.2	176
13	Surface modification of silica gels with aminoorganosilanes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 98, 235-241.	2.3	172
14	Enhanced selectivity of CO2 over CH4 in sulphonate-, carboxylate- and iodo-functionalized UiO-66 frameworks. Dalton Transactions, 2013, 42, 4730.	1.6	171
15	Silylation of the Silica Surface A Review. Journal of Liquid Chromatography and Related Technologies, 1996, 19, 2723-2752.	0.5	168
16	Plugged hexagonal templated silica: a unique micro- and mesoporous composite material with internal silica nanocapsulesElectronic supplementary information (ESI) available: Fig. S1: X-ray diffractogram of a PHTS material. Fig. S2: TEM images of SBA-15 and PHTS-2. Fig. S3: hydrothermal stabilities. See http://www.rsc.org/suppdata/cc/b2/b201424f/. Chemical Communications, 2002, , 1010-1011.	2.2	168
17	MCM-48-Supported Vanadium Oxide Catalysts, Prepared by the Molecular Designed Dispersion of VO(acac)2: A Detailed Study of the Highly Reactive MCM-48 Surface and the Structure and Activity of the Deposited VOx. Journal of Catalysis, 2001, 197, 160-171.	3.1	166
18	Silylation of micro-, meso- and non-porous oxides: a review. Microporous and Mesoporous Materials, 1999, 28, 217-232.	2.2	165

#	Article	IF	CITATIONS
19	Rationalization of the Synthesis of SBA-16: Controlling the Micro- and Mesoporosity. Journal of Physical Chemistry B, 2002, 106, 9027-9032.	1.2	160
20	Engineering a Highly Defective Stable UiO-66 with Tunable Lewis- BrÃ,nsted Acidity: The Role of the Hemilabile Linker. Journal of the American Chemical Society, 2020, 142, 3174-3183.	6.6	156
21	Understanding Intrinsic Light Absorption Properties of UiO-66 Frameworks: A Combined Theoretical and Experimental Study. Inorganic Chemistry, 2015, 54, 10701-10710.	1.9	155
22	The Influence of the Alcohol Concentration on the Structural Ordering of Mesoporous Silica:Â Cosurfactant versus Cosolvent. Journal of Physical Chemistry B, 2003, 107, 10405-10411.	1.2	145
23	Luminescent Lanthanide MOFs: A Unique Platform for Chemical Sensing. Materials, 2018, 11, 572.	1.3	145
24	Covalent triazine frameworks – a sustainable perspective. Green Chemistry, 2020, 22, 1038-1071.	4.6	138
25	Synthesis of High-Quality MCM-48 and MCM-41 by Means of the GEMINI Surfactant Method. Journal of Physical Chemistry B, 1998, 102, 8847-8851.	1.2	127
26	A photoluminescent covalent triazine framework: CO ₂ adsorption, light-driven hydrogen evolution and sensing of nitroaromatics. Journal of Materials Chemistry A, 2016, 4, 13450-13457.	5.2	122
27	Developing Luminescent Ratiometric Thermometers Based on a Covalent Organic Framework (COF). Angewandte Chemie - International Edition, 2020, 59, 1932-1940.	7.2	120
28	Soft templated mesoporous carbons: Tuning the porosity for the adsorption of large organic pollutants. Carbon, 2017, 116, 528-546.	5.4	116
29	A Rutheniumâ€Catalyzed Approach to the Friedläder Quinoline Synthesis. European Journal of Organic Chemistry, 2008, 2008, 1625-1631.	1.2	112
30	Ordered mesoporous phenolic resins: Highly versatile and ultra stable support materials. Advances in Colloid and Interface Science, 2012, 175, 39-51.	7.0	111
31	Quantification of silanol sites for the most common mesoporous ordered silicas and organosilicas: total versus accessible silanols. Physical Chemistry Chemical Physics, 2013, 15, 642-650.	1.3	110
32	The remarkable catalytic activity of the saturated metal organic framework V-MIL-47 in the cyclohexene oxidation. Chemical Communications, 2010, 46, 5085.	2.2	109
33	Influence of water in the reaction of Î ³ -aminopropyltriethoxysilane with silica gel. A Fourier-transform infrared and cross-polarisation magic-angle-spinning nuclear magnetic resonance study. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 3197-3200.	1.7	106
34	A fluorine-containing hydrophobic covalent triazine framework with excellent selective CO ₂ capture performance. Journal of Materials Chemistry A, 2018, 6, 6370-6375.	5.2	105
35	Ordered mesoporous materials at the beginning of the third millennium: new strategies to create hybrid and non-siliceous variants. Physical Chemistry Chemical Physics, 2008, 10, 347-360.	1.3	102
36	Supported Vanadium Oxide Catalysts: Quantitative Spectroscopy, Preferential Adsorption of V4+/5+, and Al2O3Coating of Zeolite Y. Journal of Physical Chemistry B, 1998, 102, 8005-8012.	1.2	101

#	Article	IF	CITATIONS
37	The coordinatively saturated vanadium MIL-47 as a low leaching heterogeneous catalyst in the oxidation of cyclohexene. Journal of Catalysis, 2012, 285, 196-207.	3.1	100
38	Lanthanide "Chameleon―Multistage Anti ounterfeit Materials. Advanced Functional Materials, 2017, 27, 1700258.	7.8	99
39	The Role of Silanols in the Modification of Silica Gel with Aminosilanes. Journal of Colloid and Interface Science, 1995, 170, 71-77.	5.0	96
40	Biocompatible Zr-based nanoscale MOFs coated with modified poly(Îμ-caprolactone) as anticancer drug carriers. International Journal of Pharmaceutics, 2016, 509, 208-218.	2.6	96
41	Antibacterial activity of a porous silver doped TiO2 coating on titanium substrates synthesized by plasma electrolytic oxidation. Applied Surface Science, 2020, 500, 144235.	3.1	95
42	Effect of porosity on the distribution and reactivity of hydroxyl groups on the surface of silica gel. Journal of the Chemical Society, Faraday Transactions, 1991, 87, 3899.	1.7	93
43	Synthesis, Spectroscopy and Catalysis of [Cr(acac)3] Complexes Grafted onto MCM-41 Materials: Formation of Polyethylene Nanofibres within Mesoporous Crystalline Aluminosilicates. Chemistry - A European Journal, 2000, 6, 2960-2970.	1.7	90
44	Ship-in-a-bottle CMPO in MIL-101(Cr) for selective uranium recovery from aqueous streams through adsorption. Journal of Hazardous Materials, 2017, 335, 1-9.	6.5	90
45	Triggering White-Light Emission in a 2D Imine Covalent Organic Framework Through Lanthanide Augmentation. ACS Applied Materials & amp; Interfaces, 2019, 11, 27343-27352.	4.0	90
46	A Visibleâ€Lightâ€Harvesting Covalent Organic Framework Bearing Single Nickel Sites as a Highly Efficient Sulfur–Carbon Crossâ€Coupling Dual Catalyst. Angewandte Chemie - International Edition, 2021, 60, 10820-10827.	7.2	90
47	Hydrogen Clathrates: Next Generation Hydrogen Storage Materials. Energy Storage Materials, 2021, 41, 69-107.	9.5	89
48	Recent advances on the utilization of layered double hydroxides (LDHs) and related heterogeneous catalysts in a lignocellulosic-feedstock biorefinery scheme. Green Chemistry, 2017, 19, 5269-5302.	4.6	87
49	Generating Catalytic Sites in UiO-66 through Defect Engineering. ACS Applied Materials & Interfaces, 2021, 13, 60715-60735.	4.0	86
50	Bipyridine-Based Nanosized Metal–Organic Framework with Tunable Luminescence by a Postmodification with Eu(III): An Experimental and Theoretical Study. Journal of Physical Chemistry C, 2013, 117, 11302-11310.	1.5	85
51	Metal-Organic Frameworks as Selective or Chiral Oxidation Catalysts. Catalysis Reviews - Science and Engineering, 2014, 56, 1-56.	5.7	85
52	A homochiral vanadium–salen based cadmium bpdc MOF with permanent porosity as an asymmetric catalyst in solvent-free cyanosilylation. Chemical Communications, 2016, 52, 1401-1404.	2.2	83
53	Removal of arsenic and mercury species from water by covalent triazine framework encapsulated γ-Fe2O3 nanoparticles. Journal of Hazardous Materials, 2018, 353, 312-319.	6.5	83
54	Visible and NIR Upconverting Er ³⁺ –Yb ³⁺ Luminescent Nanorattles and Other Hybrid PMOâ€Inorganic Structures for In Vivo Nanothermometry. Advanced Functional Materials, 2020, 30, 2003101.	7.8	83

#	Article	IF	CITATIONS
55	Estimation of the distribution of surface hydroxyl groups on silica gel, using chemical modification with trichlorosilane. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 3751.	1.7	82
56	Communication: DMRG-SCF study of the singlet, triplet, and quintet states of oxo-Mn(Salen). Journal of Chemical Physics, 2014, 140, 241103.	1.2	82
57	Functionalized chitosan adsorbents allow recovery of palladium and platinum from acidic aqueous solutions. Green Chemistry, 2019, 21, 2295-2306.	4.6	81
58	Creation of VOx Surface Species on Pure Silica MCM-48 Using Gas-Phase Modification with VO(acac)2. Journal of Physical Chemistry B, 1998, 102, 585-590.	1.2	80
59	New Functionalized Metal–Organic Frameworks MIL-47-X (X = â^'Cl, â^'Br, â^'CH ₃ ,) Tj ETQq1 1 0.7 Adsorption Properties. Journal of Physical Chemistry C, 2013, 117, 22784-22796.	784314 rg 1.5	BT /Overloc <mark>k</mark> 79
60	Effect of composition and preparation of supported MoO3 catalysts for anisole hydrodeoxygenation. Chemical Engineering Journal, 2018, 335, 120-132.	6.6	79
61	Acetylacetone Covalent Triazine Framework: An Efficient Carbon Capture and Storage Material and a Highly Stable Heterogeneous Catalyst. Chemistry of Materials, 2018, 30, 4102-4111.	3.2	78
62	Surface and Structural Properties of Silica Gel in the Modification with Î ³ -Aminopropyltriethoxysilane. Journal of Colloid and Interface Science, 1995, 174, 86-91.	5.0	77
63	The role of CO2 in the dehydrogenation of propane over WO –VO /SiO2. Journal of Catalysis, 2016, 335, 1-10.	3.1	77
64	Synthesis of Supported Transition Metal Oxide Catalysts by the Designed Deposition of Acetylacetonate Complexesâ€. Langmuir, 1999, 15, 5841-5845.	1.6	76
65	Progress in hydrometallurgical technologies to recover critical raw materials and precious metals from low-concentrated streams. Resources, Conservation and Recycling, 2019, 142, 177-188.	5.3	73
66	Fe ₃ O ₄ @MILâ€101 – A Selective and Regenerable Adsorbent for the Removal of As Species from Water. European Journal of Inorganic Chemistry, 2016, 2016, 4395-4401.	1.0	72
67	Vanadium-Incorporated MCM-48 Materials:Â Optimization of the Synthesis Procedure and an in Situ Spectroscopic Study of the Vanadium Species. Journal of Physical Chemistry B, 2001, 105, 3393-3399.	1.2	70
68	Mn-salen@MIL101(Al): a heterogeneous, enantioselective catalyst synthesized using a â€~bottle around the ship' approach. Chemical Communications, 2013, 49, 8021.	2.2	70
69	Elucidating the Vibrational Fingerprint of the Flexible Metal–Organic Framework MIL-53(Al) Using a Combined Experimental/Computational Approach. Journal of Physical Chemistry C, 2018, 122, 2734-2746.	1.5	70
70	Periodic mesoporous organosilicas functionalized with a wide variety of amines for CO2 adsorption. Physical Chemistry Chemical Physics, 2013, 15, 9792.	1.3	69
71	Metal Organic Frameworks Based Materials for Heterogeneous Photocatalysis. Molecules, 2018, 23, 2947.	1.7	69
72	New V ^{IV} -Based Metal–Organic Framework Having Framework Flexibility and High CO ₂ Adsorption Capacity. Inorganic Chemistry, 2013, 52, 113-120.	1.9	68

#	Article	IF	CITATIONS
73	Newly Designed Covalent Triazine Framework Based on Novel N-Heteroaromatic Building Blocks for Efficient CO ₂ and H ₂ Capture and Storage. ACS Applied Materials & Interfaces, 2018, 10, 1244-1249.	4.0	68
74	Supported vanadium oxide in heterogeneous catalysis: elucidating the structure–activity relationship with spectroscopy. Physical Chemistry Chemical Physics, 2009, 11, 2826.	1.3	67
75	UiO-66-(SH) ₂ as stable, selective and regenerable adsorbent for the removal of mercury from water under environmentally-relevant conditions. Faraday Discussions, 2017, 201, 145-161.	1.6	67
76	l-proline modulated zirconium metal organic frameworks: Simple chiral catalysts for the aldol addition reaction. Journal of Catalysis, 2018, 365, 36-42.	3.1	65
77	Synthesis and activity for ROMP of bidentate Schiff base substituted second generation Grubbs catalysts. Journal of Molecular Catalysis A, 2006, 260, 221-226.	4.8	63
78	Partially fluorinated MIL-47 and Al-MIL-53 frameworks: influence of functionalization on sorption and breathing properties. Physical Chemistry Chemical Physics, 2013, 15, 3552.	1.3	63
79	Supported Tantalum Oxide and Supported Vanadia-tantala Mixed Oxides: Structural Characterization and Surface Properties. Journal of Physical Chemistry B, 2001, 105, 6211-6220. A 3D-TEM study of the shape of mesopores in SBA-15 and modified SBA-15 materialsElectronic	1.2	60
80	supplementary information (ESI) available: Fig. S1: schematic view of the MCM-41 formation mechanism. Movie S2: Aligned TEM tilt series of the SBA-15 particle from Fig. 1 (sample with the lower TEOS to) Tj ETQq0 0	0 rgBT /Ov	verlggk 10 Tf S
81	Communications, 2002, , 1632-1633. Tuning the Pore Size of Ink-Bottle Mesopores by Atomic Layer Deposition. Chemistry of Materials, 2012, 24, 1992-1994.	3.2	59
82	Spatial arrangement and acid strength effects on acid–base cooperatively catalyzed aldol condensation on aminosilica materials. Journal of Catalysis, 2015, 325, 19-25.	3.1	59
83	Au@UiO-66: a base free oxidation catalyst. RSC Advances, 2015, 5, 22334-22342.	1.7	59
84	A High-Yield Reproducible Synthesis of MCM-48 Starting from Fumed Silica. Journal of Physical Chemistry B, 2001, 105, 12771-12777.	1.2	58
85	Ink-jet printing of YBa ₂ Cu ₃ O ₇ superconducting coatings and patterns from aqueous solutions. Journal of Materials Chemistry, 2012, 22, 3717-3726.	6.7	58
86	Development of Stable Oxygen Carrier Materials for Chemical Looping Processes—A Review. Catalysts, 2020, 10, 926.	1.6	58
87	Metal-free activation of molecular oxygen by covalent triazine frameworks for selective aerobic oxidation. Science Advances, 2020, 6, eaaz2310.	4.7	58
88	The effect of water on the structure of supported vanadium oxide structures. An FT-RAMAN, in situ DRIFT and in situ UV-VIS diffuse reflectance study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1997, 53, 2181-2187.	2.0	57
89	Exploring new synthetic strategies in the development of a chemically activated Ru-based olefin metathesis catalyst. Dalton Transactions, 2007, , 5201.	1.6	57
90	New Ultrastable Mesoporous Adsorbent for the Removal of Mercury lons. Langmuir, 2010, 26, 10076-10083.	1.6	57

#	Article	IF	CITATIONS
91	Vanadium metal–organic frameworks: structures and applications. New Journal of Chemistry, 2014, 38, 1853-1867.	1.4	57
92	Synthesis of Stable, Hydrophobic MCM-48/VOxCatalysts Using Alkylchlorosilanes as Coupling Agents for the Molecular Designed Dispersion of VO(acac)2. Journal of Physical Chemistry B, 1999, 103, 10102-10108.	1.2	56
93	Tuning the Pore Geometry of Ordered Mesoporous Carbons for Enhanced Adsorption of Bisphenol-A. Materials, 2015, 8, 1652-1665.	1.3	56
94	POM@MOF Hybrids: Synthesis and Applications. Catalysts, 2020, 10, 578.	1.6	56
95	POM@IL-MOFs – inclusion of POMs in ionic liquid modified MOFs to produce recyclable oxidation catalysts. Catalysis Science and Technology, 2017, 7, 1478-1487.	2.1	55
96	Base-mediated synthesis of quinolines: an unexpected cyclization reaction between 2-aminobenzylalcohol and ketones. Tetrahedron Letters, 2008, 49, 6893-6895.	0.7	54
97	Porous organic polymers as metal free heterogeneous organocatalysts. Green Chemistry, 2021, 23, 7361-7434.	4.6	54
98	Preparation of supported vanadium oxide catalysts. Adsorption and thermolysis of vanadyl acetylacetonate on a silica support. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 843.	1.7	52
99	Synthesis and characterization of supported vanadium oxides by adsorption of the acetylacetonate complex. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 3635.	1.7	52
100	Thermal Decomposition of VO(acac)2 Deposited on the Surfaces of Silica and Alumina. Langmuir, 1998, 14, 106-112.	1.6	52
101	Improved ruthenium catalysts for the modified Friedlaender quinoline synthesis. New Journal of Chemistry, 2007, 31, 1572.	1.4	51
102	Synthesized mercaptopropyl nanoporous resins in DGT probes for determining dissolved mercury concentrations. Talanta, 2011, 87, 262-267.	2.9	51
103	Exploring Lanthanide Doping in UiO-66: A Combined Experimental and Computational Study of the Electronic Structure. Inorganic Chemistry, 2018, 57, 5463-5474.	1.9	51
104	Title is missing!. Journal of Materials Science, 1997, 5, 169-197.	1.2	50
105	Growth of Iron Oxide on Yttria-Stabilized Zirconia by Atomic Layer Deposition. Journal of Physical Chemistry B, 2002, 106, 13146-13153.	1.2	50
106	A new strategy towards ultra stable mesoporous titania with nanosized anatase walls. Chemical Communications, 2003, , 1178-1179.	2.2	50
107	A MoVI grafted Metal Organic Framework: Synthesis, characterization and catalytic investigations. Journal of Catalysis, 2014, 316, 201-209.	3.1	50
108	Carbamoylmethylphosphine Oxide-Functionalized MIL-101(Cr) as Highly Selective Uranium Adsorbent. Analytical Chemistry, 2017, 89, 5678-5682.	3.2	50

#	Article	IF	CITATIONS
109	Thermal Transformations of Chromium Acetylacetonate on Silica Surface. Journal of Colloid and Interface Science, 1997, 189, 144-150.	5.0	49
110	Fast and Tunable Synthesis of ZrO ₂ Nanocrystals: Mechanistic Insights into Precursor Dependence. Inorganic Chemistry, 2015, 54, 3469-3476.	1.9	49
111	Synthesis and characterization of alumina-supported vanadium oxide catalysts prepared by the molecular designed dispersion of VO(acac)2 complexes. Physical Chemistry Chemical Physics, 2000, 2, 2673-2680.	1.3	48
112	Vanadium Analogues of Nonfunctionalized and Aminoâ€Functionalized MOFs with MILâ€101 Topology – Synthesis, Characterization, and Gas Sorption Properties. European Journal of Inorganic Chemistry, 2012, 2012, 2481-2486.	1.0	48
113	Silanolâ€Assisted Aldol Condensation on Aminated Silica: Understanding the Arrangement of Functional Groups. ChemCatChem, 2014, 6, 255-264.	1.8	48
114	Metal-organic and covalent organic frameworks for the remediation of aqueous dye solutions: Adsorptive, catalytic and extractive processes. Coordination Chemistry Reviews, 2022, 454, 214332.	9.5	48
115	Bis-coordination ofN-(Alkyl)-Nâ€~-(2,6-diisopropylphenyl) Heterocyclic Carbenes to Grubbs Catalysts. Organometallics, 2007, 26, 1052-1056.	1.1	47
116	Synthesis, Structural Characterization, and Catalytic Performance of a Vanadium-Based Metal-Organic Framework (COMOC-3). European Journal of Inorganic Chemistry, 2012, 2012, 2819-2827.	1.0	47
117	Effects of amine structure and base strength on acid–base cooperative aldol condensation. Catalysis Today, 2015, 246, 35-45.	2.2	47
118	Generation of composites for bone tissue-engineering applications consisting of gellan gum hydrogels mineralized with calcium and magnesium phosphate phases by enzymatic means. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 938-954.	1.3	47
119	Stabilization of Colloidal Ti, Zr, and Hf Oxide Nanocrystals by Protonated Tri- <i>n</i> -octylphosphine Oxide (TOPO) and Its Decomposition Products. Chemistry of Materials, 2017, 29, 10233-10242.	3.2	47
120	Dialdehyde carboxymethyl cellulose cross-linked chitosan for the recovery of palladium and platinum from aqueous solution. Reactive and Functional Polymers, 2019, 141, 145-154.	2.0	47
121	Sustainable iron-based oxygen carriers for Chemical Looping for Hydrogen Generation. International Journal of Hydrogen Energy, 2019, 44, 1374-1391.	3.8	47
122	Spectroscopic characterization of an MoOx layer on the surface of silica. An evaluation of the molecular designed dispersion method. Physical Chemistry Chemical Physics, 1999, 1, 4099-4104.	1.3	46
123	100% thiol-functionalized ethylene PMOs prepared by "thiol acid–ene―chemistry. Chemical Communications, 2013, 49, 2344.	2.2	46
124	Mechanochemical Synthesis of a New Triptycene-Based Imine-Linked Covalent Organic Polymer for Degradation of Organic Dye. Crystal Growth and Design, 2019, 19, 2525-2530.	1.4	46
125	Catalytic oxidative desulfurization of model and real diesel over a molybdenum anchored metal-organic framework. Microporous and Mesoporous Materials, 2019, 277, 245-252.	2.2	46
126	Ultra-low-k cyclic carbon-bridged PMO films with a high chemical resistance. Journal of Materials Chemistry, 2012, 22, 8281.	6.7	44

#	Article	IF	CITATIONS
127	Atomic layer deposition-based tuning of the pore size in mesoporous thin films studied by in situ grazing incidence small angle X-ray scattering. Nanoscale, 2014, 6, 14991-14998.	2.8	44
128	Optimization of soft templated mesoporous carbon synthesis using Definitive Screening Design. Chemical Engineering Journal, 2015, 259, 126-134.	6.6	44
129	Lanthanide-Grafted Bipyridine Periodic Mesoporous Organosilicas (BPy-PMOs) for Physiological Range and Wide Temperature Range Luminescence Thermometry. ACS Applied Materials & Interfaces, 2020, 12, 13540-13550.	4.0	44
130	Reproducible synthesis of high quality MCM-48 by extraction and recuperation of the gemini surfactant. Physical Chemistry Chemical Physics, 2001, 3, 127-131.	1.3	42
131	Ultra-fast hydrothermal synthesis of diastereoselective pure ethenylene-bridged periodic mesoporous organosilicas. Chemical Communications, 2007, , 2261.	2.2	40
132	Mechanistic insight into the cyclohexene epoxidation with VO(acac)2 and tert-butyl hydroperoxide. Journal of Catalysis, 2012, 294, 1-18.	3.1	40
133	Developing Luminescent Ratiometric Thermometers Based on a Covalent Organic Framework (COF). Angewandte Chemie, 2020, 132, 1948-1956.	1.6	40
134	Metal- and covalent organic frameworks as catalyst for organic transformation: Comparative overview and future perspectives. Coordination Chemistry Reviews, 2022, 451, 214259.	9.5	40
135	Creation of Exclusive Artificial Cluster Defects by Selective Metal Removal in the (Zn, Zr) Mixed-Metal UiO-66. Journal of the American Chemical Society, 2021, 143, 21511-21518.	6.6	40
136	The role of water in the reusability of aminated silica catalysts for aldol reactions. Journal of Catalysis, 2018, 361, 51-61.	3.1	39
137	Amine-containing (nano-) Periodic Mesoporous Organosilica and its application in catalysis, sorption and luminescence. Microporous and Mesoporous Materials, 2020, 291, 109687.	2.2	39
138	Luminescent Ratiometric Thermometers Based on a 4f–3d Grafted Covalent Organic Framework to Locally Measure Temperature Gradients During Catalytic Reactions. Angewandte Chemie - International Edition, 2021, 60, 3727-3736.	7.2	39
139	Bimetallic–Organic Framework as a Zero‣eaching Catalyst in the Aerobic Oxidation of Cyclohexene. ChemCatChem, 2013, 5, 3657-3664.	1.8	38
140	Atomic Layer Deposition of Pt Nanoparticles within the Cages of MIL-101: A Mild and Recyclable Hydrogenation Catalyst. Nanomaterials, 2016, 6, 45.	1.9	38
141	Development of Covalent Triazine Frameworks as Heterogeneous Catalytic Supports. Polymers, 2019, 11, 1326.	2.0	38
142	Stabilized MCM-48/VOx catalysts: synthesis, characterization and catalytic activity. Catalysis Today, 2001, 68, 119-128.	2.2	37
143	Formation and functionalization of surface Diels–Alder adducts on ethenylene-bridged periodic mesoporous organosilica. Journal of Materials Chemistry, 2011, 21, 10990.	6.7	37
144	Comparison of different solid adsorbents for the removal of mobile pesticides from aqueous solutions. Adsorption, 2015, 21, 243-254.	1.4	37

#	Article	IF	CITATIONS
145	Immobilization of Ir(I) complex on covalent triazine frameworks for C H borylation reactions: A combined experimental and computational study. Journal of Catalysis, 2019, 371, 135-143.	3.1	37
146	Illustrating the Role of Quaternary-N of BINOL Covalent Triazine-Based Frameworks in Oxygen Reduction and Hydrogen Evolution Reactions. ACS Applied Materials & Interfaces, 2020, 12, 44689-44699.	4.0	37
147	Controlled Deposition of Iron Oxide on the Surface of Zirconia by the Molecular Designed Dispersion of Fe(acac)3: A Spectroscopic Study. Langmuir, 2002, 18, 4420-4425.	1.6	36
148	In situ generation of highly active olefin metathesis initiators. Journal of Organometallic Chemistry, 2006, 691, 5482-5486.	0.8	36
149	Indenylidene Complexes of Ruthenium Bearing NHC Ligands – Structure Elucidation and Performance as Catalysts for Olefin Metathesis. European Journal of Organic Chemistry, 2009, 2009, 655-665.	1.2	36
150	Sorption and breathing properties of difluorinated MIL-47 and Al-MIL-53 frameworks. Microporous and Mesoporous Materials, 2013, 181, 175-181.	2.2	36
151	Mesoporous phenolic resin and mesoporous carbon for the removal of S-Metolachlor and Bentazon herbicides. Chemical Engineering Journal, 2014, 251, 92-101.	6.6	35
152	Grafting of a Eu ³⁺ -tfac complex on to a Tb ³⁺ -metal organic framework for use as a ratiometric thermometer. Dalton Transactions, 2017, 46, 12717-12723.	1.6	35
153	White Light Emission Properties of Defect Engineered Metal–Organic Frameworks by Encapsulation of Eu ³⁺ and Tb ³⁺ . Crystal Growth and Design, 2019, 19, 6339-6350.	1.4	35
154	Title is missing!. Journal of Porous Materials, 1998, 5, 317-324.	1.3	34
155	Template extraction from porous clay heterostructures: Influence on the porosity and the hydrothermal stability of the materials. Physical Chemistry Chemical Physics, 2002, 4, 2818-2823.	1.3	34
156	Periodic Mesoporous Organosilicas Consisting of 3D Hexagonally Ordered Interconnected Globular Pores. Journal of Physical Chemistry C, 2009, 113, 5556-5562.	1.5	34
157	Adsorption and Separation of Small Hydrocarbons on the Flexible, Vanadium-Containing MOF, COMOC-2. Langmuir, 2015, 31, 5063-5070.	1.6	34
158	Tunable Large Pore Mesoporous Carbons for the Enhanced Adsorption of Humic Acid. Langmuir, 2017, 33, 6769-6777.	1.6	34
159	Optimization of spray dried attrition-resistant iron based oxygen carriers for chemical looping reforming. Chemical Engineering Journal, 2017, 309, 824-839.	6.6	34
160	Tuning the acidic–basic properties by Zn-substitution in Mg–Al hydrotalcites as optimal catalysts for the aldol condensation reaction. Journal of Materials Science, 2017, 52, 628-642.	1.7	34
161	Magnetism of iron-containing MCM-41 spheres. Journal of Magnetism and Magnetic Materials, 2004, 280, 31-36.	1.0	33
162	Global and regional parameters of dyssynchrony in ischemic and nonischemic cardiomyopathy. American Journal of Cardiology, 2005, 95, 421-423.	0.7	33

#	Article	IF	CITATIONS
163	Ethenylene-bridged periodic mesoporous organosilicas with ultra-large mesopores. Chemical Communications, 2009, , 4052.	2.2	33
164	A "one-step―sulfonic acid PMO as a recyclable acid catalyst. Journal of Catalysis, 2015, 326, 139-148.	3.1	33
165	Hydrogenation of Furfural with a Pt–Sn Catalyst: The Suitability to Sustainable Industrial Application. Organic Process Research and Development, 2016, 20, 1917-1929.	1.3	33
166	Thiol-ethylene bridged PMO: A high capacity regenerable mercury adsorbent via intrapore mercury thiolate crystal formation. Journal of Hazardous Materials, 2017, 339, 368-377.	6.5	33
167	Temperature dependent NIR emitting lanthanide-PMO/silica hybrid materials. Dalton Transactions, 2017, 46, 7878-7887.	1.6	33
168	Microwave induced "egg yolk―structure in Cr/V-MIL-53. Chemical Communications, 2017, 53, 8478-8481.	2.2	33
169	Chemical sensors based on nano-sized lanthanide-grafted periodic mesoporous organosilica hybrid materials. Journal of Materials Chemistry C, 2019, 7, 8109-8119.	2.7	33
170	Aqueous CSD approach for the growth of novel, lattice-tuned LaxCe1â^'xOδ epitaxial layers. Journal of Materials Chemistry, 2012, 22, 8476.	6.7	32
171	Synthesis, characterization and sorption properties of functionalized Cr-MIL-101-X (X=–F, –Cl, –Br,) Tj ETQ	q110.78	4314 rgBT 0
172	Bioinspired, biomimetic, double-enzymatic mineralization of hydrogels for bone regeneration with calcium carbonate. Materials Letters, 2017, 190, 13-16.	1.3	32
173	TiOx-VOxMixed Oxides on SBA-15 Support Prepared by the Designed Dispersion of Acetylacetonate Complexes:Â Spectroscopic Study of the Reaction Mechanisms. Journal of Physical Chemistry B, 2004, 108, 3794-3800.	1.2	31
174	Fast and convenient base-mediated synthesis of 3-substituted quinolines. Tetrahedron Letters, 2009, 50, 201-203.	0.7	31
175	Ethenylene-Bridged Periodic Mesoporous Organosilicas: From <i>E</i> to <i>Z</i> . Chemistry of Materials, 2009, 21, 5792-5800.	3.2	31
176	Ti-functionalized NH2-MIL-47: An effective and stable epoxidation catalyst. Catalysis Today, 2013, 208, 97-105.	2.2	31
177	Eu ³⁺ @PMO: synthesis, characterization and luminescence properties. Journal of Materials Chemistry C, 2015, 3, 2909-2917.	2.7	31
178	Enzymatic, urease-mediated mineralization of gellan gum hydrogel with calcium carbonate, magnesium-enriched calcium carbonate and magnesium carbonate for bone regeneration applications. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 3556-3566.	1.3	31
179	An anionic metal-organic framework as a platform for charge-and size-dependent selective removal of cationic dyes. Dyes and Pigments, 2018, 156, 332-337.	2.0	31
180	Amidoxime-functionalized covalent organic framework as simultaneous luminescent sensor and adsorbent for organic arsenic from water. Chemical Engineering Journal, 2022, 429, 132162.	6.6	31

#	Article	IF	CITATIONS
181	Enzymatic Mineralization of Silk Scaffolds. Macromolecular Bioscience, 2014, 14, 991-1003.	2.1	30
182	An aliphatic hexene-covalent triazine framework for selective acetylene/methane and ethylene/methane separation. Journal of Materials Chemistry A, 2019, 7, 13188-13196.	5.2	30
183	Red edge effect and chromoselective photocatalysis with amorphous covalent triazine-based frameworks. Nature Communications, 2022, 13, 2171.	5.8	30
184	Modelling of the hydroxyl group population using an energetic analysis of the temperature-programmed desorption of pyridine from silica gel. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 723.	1.7	29
185	Poly(ethylene oxide)- <i>b</i> -poly(<scp>l</scp> -lactide) Diblock Copolymer/Carbon Nanotube-Based Nanocomposites: LiCl as Supramolecular Structure-Directing Agent. Biomacromolecules, 2011, 12, 4086-4094.	2.6	29
186	Facile synthesis and gas adsorption behavior of new functionalized Al-MIL-101-X (XÂ= –CH3, –NO2,) Tj ETQqC 91-97.	0 0 rgBT 2.2	/Overlock 1 29
187	Conquering the crystallinity conundrum: efforts to increase quality of covalent organic frameworks. Materials Advances, 2021, 2, 2811-2845.	2.6	29
188	Gas phase adsorption of alkanes, alkenes and aromatics on the sulfone-DUT-5 Metal Organic Framework. Microporous and Mesoporous Materials, 2015, 206, 217-225.	2.2	28
189	Direct Imaging of ALD Deposited Pt Nanoclusters inside the Giant Pores of MILâ€101. Particle and Particle Systems Characterization, 2016, 33, 382-387.	1.2	28
190	High-nitrogen containing covalent triazine frameworks as basic catalytic support for the Cu-catalyzed Henry reaction. Journal of Catalysis, 2019, 375, 242-248.	3.1	28
191	Synthesis of stable and directly usable hexagonal mesoporous silica by efficient amine extraction in acidified water. Chemical Communications, 2000, , 2489-2490.	2.2	27
192	Synthesis, characterization and sorption properties of NH2-MIL-47. Physical Chemistry Chemical Physics, 2012, 14, 15562.	1.3	27
193	Novel injectable, self-gelling hydrogel–microparticle composites for bone regeneration consisting of gellan gum and calcium and magnesium carbonate microparticles. Biomedical Materials (Bristol), 2016, 11, 065011.	1.7	27
194	Polar protic solvent-trapping polymorphism of the Hg ^{II} -hydrazone coordination polymer: experimental and theoretical findings. CrystEngComm, 2017, 19, 3017-3025.	1.3	27
195	A cheap mesoporous silica from fly ash as an outstanding adsorbent for sulfate in water. Microporous and Mesoporous Materials, 2018, 272, 184-192.	2.2	27
196	Plasma treatment effects on bulk properties of polycaprolactone nanofibrous mats fabricated by uncommon AC electrospinning: A comparative study. Surface and Coatings Technology, 2020, 399, 126203.	2.2	27
197	Fabrication of Microporous Coatings on Titanium Implants with Improved Mechanical, Antibacterial, and Cell-Interactive Properties. ACS Applied Materials & amp; Interfaces, 2020, 12, 30155-30169.	4.0	27
198	Gas-phase deposition and thermal transformations of Cr(acac)3 on the surface of alumina supports. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 3191-3196.	1.7	26

#	Article	IF	CITATIONS
199	Characterization of a TiCl4-modified silica surface by means of quantitative surface analysis. Physical Chemistry Chemical Physics, 1999, 1, 2569-2572.	1.3	26
200	Controlled Reduction of the Acid Site Density of SAPO-34 Molecular Sieve by Means of Silanation and Disilanation. Journal of Physical Chemistry B, 2003, 107, 3161-3167.	1.2	26
201	Ultra stable ordered mesoporous phenol/formaldehyde polymers as a heterogeneous support for vanadium oxide. Chemical Communications, 2008, , 4475.	2.2	26
202	<i>In Situ</i> Electron Paramagnetic Resonance and X-ray Diffraction Monitoring of Temperature-Induced Breathing and Related Structural Transformations in Activated V-Doped MIL-53(Al). Journal of Physical Chemistry C, 2016, 120, 17400-17407.	1.5	26
203	Enhanced gas sorption and breathing properties of the new sulfone functionalized COMOC-2 metal organic framework. Dalton Transactions, 2016, 45, 9485-9491.	1.6	26
204	Niâ^'Cu Hydrotalciteâ€Derived Mixed Oxides as Highly Selective and Stable Catalysts for the Synthesis of βâ€Branched Bioalcohols by the Guerbet Reaction. ChemSusChem, 2016, 9, 3196-3205.	3.6	26
205	Combinatorial effects of coral addition and plasma treatment on the properties of chitosan/polyethylene oxide nanofibers intended for bone tissue engineering. Carbohydrate Polymers, 2021, 253, 117211.	5.1	26
206	Siloxane bridges as reactive sites on silica gel. Fourier transform infrared–photoacoustic spectroscopic analysis of the chemisorption of diborane. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 3747-3750.	1.7	25
207	Developing a new and versatile ordered mesoporous organosilica as a pH and temperature stable chromatographic packing material. RSC Advances, 2015, 5, 5546-5552.	1.7	25
208	Processing and characterization of Fe-based oxygen carriers for chemical looping for hydrogen production. International Journal of Greenhouse Gas Control, 2018, 70, 12-21.	2.3	25
209	Modelling of the reaction-phase interaction of γ-aminopropyltriethoxysilane with silica. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 2037-2040.	1.7	24
210	Incorporation of Transition Metal Ions in Aluminophosphate Molecular Sieves with AST Structure. Journal of Physical Chemistry B, 2001, 105, 2677-2686.	1.2	24
211	Spherical mesoporous silica particles by spray drying: Doubling the retention factor of HPLC columns. Microporous and Mesoporous Materials, 2011, 142, 282-291.	2.2	24
212	Sensing the framework state and guest molecules in MIL-53(Al) via the electron paramagnetic resonance spectrum of V ^{IV} dopant ions. Physical Chemistry Chemical Physics, 2017, 19, 24545-24554.	1.3	24
213	Supramolecular design of high-performance poly(l-lactide)/carbon nanotube nanocomposites: from melt-processing to rheological, morphological and electrical properties. Journal of Materials Chemistry, 2011, 21, 16190.	6.7	23
214	Atomic Layer Deposition of Titanium and Vanadium Oxide on Mesoporous Silica and Phenol/Formaldehyde Resins - the Effect of the Support on the Liquid Phase Epoxidation of Cyclohexene. European Journal of Inorganic Chemistry, 2012, 2012, 251-260.	1.0	23
215	Direct Synthesis of an Iridium(III) Bipyridine Metal–Organic Framework as a Heterogeneous Catalyst for Aerobic Alcohol Oxidation. ChemCatChem, 2016, 8, 3672-3679.	1.8	23
216	Enzymatically biomineralized chitosan scaffolds for tissue-engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1500-1513.	1.3	23

#	Article	IF	CITATIONS
217	Effect of Building Block Transformation in Covalent Triazineâ€Based Frameworks for Enhanced CO 2 Uptake and Metalâ€Free Heterogeneous Catalysis. Chemistry - A European Journal, 2020, 26, 1548-1557.	1.7	23
218	A new procedure to seal the pores of mesoporous low-k films with precondensed organosilica oligomers. Chemical Communications, 2012, 48, 2797.	2.2	22
219	Tuning the architecture and properties of microstructured yttrium tungstate oxide hydroxide and lanthanum tungstate. Dalton Transactions, 2013, 42, 5471.	1.6	22
220	Evaluation of phenylene-bridged periodic mesoporous organosilica as a stationary phase for solid phase extraction. Journal of Chromatography A, 2014, 1370, 25-32.	1.8	22
221	Nanothermometers based on lanthanide incorporated Periodic Mesoporous Organosilica. Journal of Materials Chemistry C, 2019, 7, 4222-4229.	2.7	22
222	Flexible luminescent non-lanthanide metal–organic frameworks as small molecules sensors. Dalton Transactions, 2021, 50, 14513-14531.	1.6	22
223	Hybrid Nanocomposites Formed by Lanthanide Nanoparticles in Zr-MOF for Local Temperature Measurements during Catalytic Reactions. Chemistry of Materials, 2021, 33, 8007-8017.	3.2	22
224	Periodic Mesoporous Organosilica Functionalized with Sulfonic Acid Groups as Acid Catalyst for Glycerol Acetylation. Materials, 2013, 6, 3556-3570.	1.3	21
225	Enrichment of enzymatically mineralized gellan gum hydrogels with phlorotannin-rich <i>Ecklonia cava</i> extract Seanol [®] to endow antibacterial properties and promote mineralization. Biomedical Materials (Bristol), 2016, 11, 045015.	1.7	21
226	Catalytic carpets: Pt@MIL-101@electrospun PCL, a surprisingly active and robust hydrogenation catalyst. Journal of Catalysis, 2018, 360, 81-88.	3.1	21
227	Titania-functionalized diatom frustules as photocatalyst for indoor air purification. Applied Catalysis B: Environmental, 2018, 226, 303-310.	10.8	21
228	Functionalized periodic mesoporous organosilicas: from metal free catalysis to sensing. Journal of Materials Chemistry A, 2019, 7, 14060-14069.	5.2	21
229	Light-Emitting Lanthanide Periodic Mesoporous Organosilica (PMO) Hybrid Materials. Materials, 2020, 13, 566.	1.3	21
230	Some Precautions when Determining the Silanol Number, Using Chemical Modification with Methylchlorosilanes. Journal of Colloid and Interface Science, 1993, 157, 518-519.	5.0	20
231	Catalytic Performance of Vanadium MILâ€47 and Linkerâ€Substituted Variants in the Oxidation of Cyclohexene: A Combined Theoretical and Experimental Approach. ChemPlusChem, 2014, 79, 1183-1197.	1.3	20
232	Facile Synthesis of Cooperative Acid–Base Catalysts by Clicking Cysteine and Cysteamine on an Ethyleneâ€Bridged Periodic Mesoporous Organosilica. European Journal of Inorganic Chemistry, 2016, 2016, 2144-2151.	1.0	20
233	Functionalized metal-organic-framework CMPO@MIL-101(Cr) as a stable and selective rare earth adsorbent. Journal of Materials Science, 2016, 51, 5019-5026.	1.7	20
234	The synthesis of stable, hydrophobic MCM-48/VOx catalysts, using alkylchlorosilanes as coupling agents for the molecular designed dispersion of VO(acac)2. Microporous and Mesoporous Materials, 2000, 38, 385-390.	2.2	19

#	Article	IF	CITATIONS
235	On the synthesis of vanadium containing molecular sieves by experimental design from a VOSO4÷5H2O·Al(iPrO)3·Pr2NH·H2O gel: occurrence of VAPO-41 as a secondary structure in the synthesis of VAPO-11. Microporous and Mesoporous Materials, 2000, 39, 493-507.	2.2	19
236	Hydrophobic high quality ring PMOs with an extremely high stability. Journal of Materials Chemistry, 2010, 20, 1709.	6.7	19
237	Covalent immobilization of the Jacobsen catalyst on mesoporous phenolic polymer: A highly enantioselective and stable asymmetric epoxidation catalyst. Materials Chemistry and Physics, 2013, 141, 967-972.	2.0	19
238	Tailoring Bifunctional Periodic Mesoporous Organosilicas for Cooperative Catalysis. ACS Applied Nano Materials, 2020, 3, 2373-2382.	2.4	19
239	Overview of Nâ€Rich Antennae Investigated in Lanthanideâ€Based Temperature Sensing. Chemistry - A European Journal, 2021, 27, 7214-7230.	1.7	19
240	Novel water-dispersible lanthanide-grafted covalent organic framework nanoplates for luminescent levofloxacin sensing and visual pH detection. Dyes and Pigments, 2021, 196, 109818.	2.0	19
241	Designing advanced functional periodic mesoporous organosilicas for biomedical applications Electrodes. AIMS Materials Science, 2014, 1, 70-86.	0.7	19
242	Isomeric periodic mesoporous organosilicas with controllable properties. Journal of Materials Chemistry, 2009, 19, 8839.	6.7	18
243	A simple room-temperature synthesis of mesoporous silica rods with tunable size and porosity. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	18
244	Dioxygen activation in photooxidation of diphenylmethane by a dioxomolybdenum(VI) complex anchored covalently onto mesoporous titania. Transition Metal Chemistry, 2013, 38, 119-127.	0.7	18
245	Multiâ€frequency (S, X, Q and Wâ€band) EPR and ENDOR Study of Vanadium(IV) Incorporation in the Aluminium Metal–Organic Framework MILâ€53. ChemPhysChem, 2015, 16, 2968-2973.	1.0	18
246	Mineralization of gellan gum hydrogels with calcium and magnesium carbonates by alternate soaking in solutions of calcium/magnesium and carbonate ion solutions. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1825-1834.	1.3	18
247	Lanthanide grafted phenanthroline-polymer for physiological temperature range sensing. Journal of Materials Chemistry C, 2019, 7, 10972-10980.	2.7	18
248	Novel hexaazatrinaphthalene-based covalent triazine frameworks as high-performance platforms for efficient carbon capture and storage. Microporous and Mesoporous Materials, 2019, 290, 109650.	2.2	18
249	Title is missing!. Journal of Porous Materials, 1998, 5, 305-316.	1.3	17
250	Mechanical Strength of Micelle-Templated Silicas (MTS). Studies in Surface Science and Catalysis, 2000, , 665-672.	1.5	17
251	Secondary metathesis with Grubbs catalysts in the 1,4-polybutadiene system. Catalysis Communications, 2008, 9, 1054-1059.	1.6	17
252	Luminescent thermometer based on Eu ³⁺ /Tb ³⁺ â€organicâ€functionalized mesoporous silica. Luminescence, 2018, 33, 567-573.	1.5	17

#	Article	IF	CITATIONS
253	Aminated poly(ethylene glycol) methacrylate resins as stable heterogeneous catalysts for the aldol reaction in water. Journal of Catalysis, 2020, 381, 540-546.	3.1	17
254	Elucidating the promotional effect of a covalent triazine framework in aerobic oxidation. Applied Catalysis B: Environmental, 2020, 269, 118769.	10.8	17
255	A Visibleâ€Lightâ€Harvesting Covalent Organic Framework Bearing Single Nickel Sites as a Highly Efficient Sulfur–Carbon Crossâ€Coupling Dual Catalyst. Angewandte Chemie, 2021, 133, 10915-10922.	1.6	17
256	Reaction of NH3 with trichlorosilylated silica gel: a study of the reaction mechanism as a function of temperature. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 2509.	1.7	16
257	Spectroscopic evidence of thermally induced metamorphosis in ethenylene-bridged periodic mesoporous organosilicas. Physical Chemistry Chemical Physics, 2008, 10, 5349.	1.3	16
258	Covalent triazine framework/carbon nanotube hybrids enabling selective reduction of CO ₂ to CO at low overpotential. Green Chemistry, 2020, 22, 3095-3103.	4.6	16
259	AlOxCoating of Ultrastable Zeolite Y:Â A Possible Method for Vanadium Passivation of FCC Catalysts. Journal of Physical Chemistry B, 2000, 104, 9195-9202.	1.2	15
260	Comparative study of ethylene- and ethenylene-bridged periodic mesoporous organosilicas. Microporous and Mesoporous Materials, 2010, 131, 68-74.	2.2	15
261	Synthesis of sulphonated mesoporous phenolic resins and their application in esterification and asymmetric aldol reactions. Materials Chemistry and Physics, 2013, 138, 131-139.	2.0	15
262	A series of sulfonic acid functionalized mixed-linker DUT-4 analogues: synthesis, gas sorption properties and catalytic performance. Dalton Transactions, 2017, 46, 14356-14364.	1.6	15
263	Ce(III)-Based Frameworks: From 1D Chain to 3D Porous Metal–Organic Framework. Crystal Growth and Design, 2019, 19, 7096-7105.	1.4	15
264	Straightforward preparation of fluorinated covalent triazine frameworks with significantly enhanced carbon dioxide and hydrogen adsorption capacities. Dalton Transactions, 2019, 48, 17612-17619.	1.6	15
265	Rational design of nucleophilic amine sites via computational probing of steric and electronic effects. Catalysis Today, 2019, 334, 96-103.	2.2	15
266	Regeneration of Hopcalite used for the adsorption plasma catalytic removal of toluene by non-thermal plasma. Journal of Hazardous Materials, 2021, 402, 123877.	6.5	15
267	Special data handling techniques for Fourier-transform infrared photo-acoustic spectra. Estimation and characterization of the N contents on ammoniated trichlorosilylated silica gel, using partial least-squares regression and curve fitting on the Si—H stretching vibration. Journal of the Chemical Society. Faraday Transactions, 1993, 89, 63-68.	1.7	14
268	Plugged Hexagonal Mesoporous Templated Silica : A unique micro- and mesoporous material with internal silica nanocapsules Studies in Surface Science and Catalysis, 2002, 141, 45-52.	1.5	14
269	Heterogeneous Ru(<scp>iii</scp>) oxidation catalysts via â€~click' bidentate ligands on a periodic mesoporous organosilica support. Green Chemistry, 2016, 18, 6035-6045.	4.6	14
270	Synthesis, characterization and catalytic performance of Mo based metal- organic frameworks in the epoxidation of propylene by cumene hydroperoxide. Chinese Chemical Letters, 2017, 28, 1057-1061.	4.8	14

#	Article	IF	CITATIONS
271	Synthesis of L-serine modified benzene bridged periodic mesoporous organosilica and its catalytic performance towards aldol condensations. Microporous and Mesoporous Materials, 2017, 251, 1-8.	2.2	14
272	Catalysis in MOFs: general discussion. Faraday Discussions, 2017, 201, 369-394.	1.6	14
273	Periodic mesoporous organosilicas as porous matrix for heterogeneous lyophobic systems. Microporous and Mesoporous Materials, 2018, 260, 166-171.	2.2	14
274	Luminescent Grapheneâ€Based Materials via Europium Complexation on Dipyridylpyridazineâ€Functionalized Graphene Sheets. Chemistry - A European Journal, 2019, 25, 6823-6830.	1.7	14
275	Microalgae: a sustainable adsorbent with high potential for upconcentration of indium(<scp>iii</scp>) from liquid process and waste streams. Green Chemistry, 2020, 22, 1985-1995.	4.6	14
276	Upconverting Er ³⁺ –Yb ³⁺ Inorganic/Covalent Organic Framework Core–Shell Nanoplatforms for Simultaneous Catalysis and Nanothermometry. ACS Applied Materials & Interfaces, 2021, 13, 47010-47018.	4.0	14
277	Characterization and quantification of the NH3 modification of a BCl3-treated silica gel surface. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 679.	1.7	13
278	Aluminum Incorporation into MCM-48 toward the Creation of BrÃ,nsted Acidity. Journal of Physical Chemistry B, 2004, 108, 13905-13912.	1.2	13
279	Influence of the initial iron concentration on the iron-loading in MCM-41 and thermal decomposition of the supported iron complexes. Microporous and Mesoporous Materials, 2005, 79, 299-305.	2.2	13
280	PMOâ€Immobilized Au ^I –NHC Complexes: Heterogeneous Catalysts for Sustainable Processes. ChemPhysChem, 2018, 19, 430-436.	1.0	13
281	Bifunctional Noble-Metal-Free Catalyst for the Selective Aerobic Oxidation-Knoevenagel One-Pot Reaction: Encapsulation of Polyoxometalates into an Alkylamine-Modified MIL-101 Framework. ACS Applied Materials & Interfaces, 2021, 13, 23558-23566.	4.0	13
282	Gas-phase chlorosilylation of silica gel: effectiveness, surface coverage and stoichiometry. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 353.	1.7	12
283	A Counterion-Catalyzed (S0H+)(X-I+) Pathway toward Heat- and Steam-Stable Mesostructured Silica Assembled from Amines in Acidic Conditions. Journal of Physical Chemistry B, 2003, 107, 3690-3696.	1.2	12
284	Microwave-assisted synthesis of mesoporous titania with increased crystallinity, specific surface area, and photocatalytic activity. Journal of Materials Science, 2016, 51, 9822-9829.	1.7	12
285	Discovery of a novel, large pore phase in a bimetallic Al/V metal–organic framework. Journal of Materials Chemistry A, 2017, 5, 24580-24584.	5.2	12
286	Luminescent Ratiometric Thermometers Based on a 4f–3d Grafted Covalent Organic Framework to Locally Measure Temperature Gradients During Catalytic Reactions. Angewandte Chemie, 2021, 133, 3771-3780.	1.6	12
287	A lanthanide-functionalized covalent triazine framework as a physiological molecular thermometer. Journal of Materials Chemistry C, 2021, 9, 6436-6444.	2.7	12
288	An Overview of the Challenges and Progress of Synthesis, Characterization and Applications of Plugged SBA-15 Materials for Heterogeneous Catalysis. Materials, 2021, 14, 5082.	1.3	12

#	Article	IF	CITATIONS
289	First FT-Raman and 1H NMR comparative investigations in ring opening metathesis polymerization. Vibrational Spectroscopy, 2009, 51, 147-151.	1.2	11
290	Effect of the C-bridge length on the ultraviolet-resistance of oxycarbosilane low-k films. Applied Physics Letters, 2016, 108, .	1.5	11
291	Ca:Mg:Zn:CO 3 and Ca:Mg:CO 3 —tri- and bi-elemental carbonate microparticles for novel injectable self-gelling hydrogel–microparticle composites for tissue regeneration. Biomedical Materials (Bristol), 2017, 12, 025015.	1.7	11
292	Kinetic evaluation of chitosan-derived catalysts for the aldol reaction in water. Reaction Chemistry and Engineering, 2019, 4, 1948-1956.	1.9	11
293	Quantifying the Likelihood of Structural Models through a Dynamically Enhanced Powder Xâ€Ray Diffraction Protocol. Angewandte Chemie - International Edition, 2021, 60, 8913-8922.	7.2	11
294	Oxygen-rich poly-bisvanillonitrile embedded amorphous zirconium oxide nanoparticles as reusable and porous adsorbent for removal of arsenic species from water. Journal of Hazardous Materials, 2021, 413, 125356.	6.5	11
295	Design and applications of a home-built in situ FT-Raman spectroscopic cell. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2004, 60, 2969-2975.	2.0	10
296	Pyrrole PMOs, incorporating new N-heterocyclic compounds on an ethene-PMO through Diels–Alder reactions. Materials Chemistry and Physics, 2014, 148, 403-410.	2.0	10
297	Vulcanized Ethene-PMO: A New Strategy to Create Ultrastable Support Materials and Adsorbents. Journal of Physical Chemistry C, 2014, 118, 17862-17869.	1.5	10
298	Mechanistic Investigation on Oxygen Transfer with the Manganese‣alen Complex. ChemCatChem, 2015, 7, 2711-2719.	1.8	10
299	Tuning component enrichment in amino acid functionalized (organo)silicas. Catalysis Communications, 2017, 88, 85-89.	1.6	10
300	A Heterogeneous Hydrogenâ€Evolution Catalyst Based on a Mesoporous Organosilica with a Diiron Catalytic Center Modelling [FeFe]â€Hydrogenase. ChemCatChem, 2018, 10, 4894-4899.	1.8	10
301	Hydrogenative Ring-Rearrangement of Furfural to Cyclopentanone over Pd/UiO-66-NO2 with Tunable Missing-Linker Defects. Molecules, 2021, 26, 5736.	1.7	10
302	A coordinative saturated vanadium containing metal organic framework that shows a remarkable catalytic activity. Studies in Surface Science and Catalysis, 2010, 175, 329-332.	1.5	9
303	Post-synthesis bromination of benzene bridged PMO as a way to create a high potential hybrid material. Microporous and Mesoporous Materials, 2016, 236, 244-249.	2.2	9
304	Electronic, magnetic and photophysical properties of MOFs and COFs: general discussion. Faraday Discussions, 2017, 201, 87-99.	1.6	9
305	Photo-epoxidation of (α, β)-pinene with molecular O2 catalyzed by a dioxo-molybdenum (VI)-based Metal–Organic Framework. Research on Chemical Intermediates, 2021, 47, 4227-4244.	1.3	9
306	Kinetic study of the chemisorption of diborane on silica gel: application of the Elovich equation. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 65.	1.7	8

#	Article	IF	CITATIONS
307	A new sulphonic acid functionalized periodic mesoporous organosilica as a suitable catalyst. Studies in Surface Science and Catalysis, 2010, , 365-368.	1.5	8
308	Sealed ultra low-k organosilica films with improved electrical, mechanical and chemical properties. Journal of Materials Chemistry C, 2013, 1, 3961.	2.7	8
309	UV cure of oxycarbosilane low-k films. Microelectronic Engineering, 2016, 156, 103-107.	1.1	8
310	Continuous-feed nanocasting process for the synthesis of bismuth nanowire composites. Chemical Communications, 2017, 53, 12294-12297.	2.2	8
311	Construction of Tetrathiafulvalene-based Covalent Organic Frameworks for Superior Iodine Capture. Chemical Research in Chinese Universities, 2022, 38, 409-414.	1.3	8
312	The creation of MOx surface species on pure silica MCM-48 using gas- and liquid-phase modifications with M-acetylacetonate complexes. Studies in Surface Science and Catalysis, 1998, , 333-341.	1.5	7
313	Gold/titania composites: An X-ray absorption spectroscopy study on the influence of the reduction method. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2015, 110, 45-50.	1.5	7
314	The enantioselectivity of the manganese-salen complex in the epoxidation of unfunctionalized olefins and the influence of grafting. Journal of Molecular Catalysis A, 2015, 406, 106-113.	4.8	7
315	Fine-tuning the theoretically predicted structure of MIL-47(V) with the aid of powder X-ray diffraction. CrystEngComm, 2015, 17, 8612-8622.	1.3	7
316	Vibrational fingerprint of the absorption properties of UiO-type MOF materials. Theoretical Chemistry Accounts, 2016, 135, 1.	0.5	7
317	Structural and catalytic properties of Au/MgO-type catalysts prepared in aqueous or methanol phase: application in the CO oxidation reaction. Journal of Materials Science, 2017, 52, 4727-4741.	1.7	7
318	One-pot preparation of Ni-Cu nanoparticles supported on Î ³ -Al2O3 as selective and stable catalyst for the Guerbet reaction of 1-octanol. Catalysis Communications, 2017, 98, 94-97.	1.6	7
319	On the mechanical and electrical properties of self-assembly-based organosilicate porous films. Journal of Materials Chemistry C, 2017, 5, 8599-8607.	2.7	7
320	Wet-Chemical Synthesis of Enhanced-Thermopower <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>Bi</mml:mi></mml:mrow><mml:mrow><mm Nanowire Composites for Solid-State Active Cooling of Electronics. Physical Review Applied, 2018, 9, .</mm </mml:mrow></mml:msub></mml:mrow></mml:math 	ıl:mñ>1 <td>nml:mn><mr< td=""></mr<></td>	nml:mn> <mr< td=""></mr<>
321	Template-dependent hydrophobicity in mesoporous organosilica films. Microporous and Mesoporous Materials, 2018, 259, 111-115.	2.2	7
322	Optical Properties of Isolated and Covalent Organic Framework-Embedded Ruthenium Complexes. Journal of Physical Chemistry A, 2019, 123, 6854-6867.	1.1	7
323	Sustainable iron-based oxygen carriers for hydrogen production – Real-time operando investigation. International Journal of Greenhouse Gas Control, 2019, 88, 393-402.	2.3	7
324	Abatement of Toluene Using a Sequential Adsorption-Catalytic Oxidation Process: Comparative Study of Potential Adsorbent/Catalytic Materials. Catalysts, 2020, 10, 761.	1.6	7

#	Article	IF	CITATIONS
325	A comprehensive model for the role of water and silanols in the amine catalyzed aldol reaction. Chemical Engineering Journal, 2021, 404, 127070.	6.6	7
326	Total characterization of the BCl3-modified silica surface by means of quantitative surface analysis. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 2173.	1.7	6
327	The use of alkylchlorosilanes as coupling agents for the synthesis of stable, hydrophobic, surfactant extracted MCM-48/VOx catalysts Studies in Surface Science and Catalysis, 2000, 129, 317-326.	1.5	6
328	Calcium phosphate cements modified with pore expanded SBA-15 materials. Journal of Materials Chemistry, 2012, 22, 14502.	6.7	6
329	In Situ Study of ALD Processes Using Synchrotron-based X-ray Fluorescence and Scattering Techniques. ECS Transactions, 2013, 50, 35-42.	0.3	6
330	Application toward Confocal Full-Field Microscopic X-ray Absorption Near Edge Structure Spectroscopy. Analytical Chemistry, 2017, 89, 2123-2130.	3.2	6
331	New directions in gas sorption and separation with MOFs: general discussion. Faraday Discussions, 2017, 201, 175-194.	1.6	6
332	Electronic properties of heterogenized Ru(<scp>ii</scp>) polypyridyl photoredox complexes on covalent triazine frameworks. Journal of Materials Chemistry A, 2019, 7, 8433-8442.	5.2	6
333	A Ru-Complex Tethered to a N-Rich Covalent Triazine Framework for Tandem Aerobic Oxidation-Knoevenagel Condensation Reactions. Molecules, 2021, 26, 838.	1.7	6
334	Rational design of lanthanide nano periodic mesoporous organosilicas (Ln-nano-PMOs) for near-infrared emission. Dalton Transactions, 2021, 50, 2774-2781.	1.6	6
335	Metal-Free Chemoselective Reduction of Nitroarenes Catalyzed by Covalent Triazine Frameworks: The Role of Embedded Heteroatoms. ACS Applied Materials & Interfaces, 2022, 14, 15287-15297.	4.0	6
336	Luminescent Nanorattles Based on Bipyridine Periodic Mesoporous Organosilicas for Simultaneous Thermometry and Catalysis. Chemistry of Materials, 2022, 34, 3770-3780.	3.2	6
337	Effect of non-thermal plasma in the activation and regeneration of 13X zeolite for enhanced VOC elimination by cycled storage and discharge process. Journal of Cleaner Production, 2022, 364, 132687.	4.6	6
338	Chemisorption of diborane of silica gel: a study of the changes in pore structure. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 1459.	1.7	5
339	Assessment of LV diastolic filling using color M-mode Doppler echocardiography: validation in a new hydraulic model. Biomechanics and Modeling in Mechanobiology, 2004, 2, 127-138.	1.4	5
340	Redetermination of [Pr(NO ₃) ₃ (H ₂ O) ₄]·2H ₂ O. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, i59-i60.	0.2	5
341	Structural and Photophysical Properties of Various Polypyridyl Ligands: A Combined Experimental and Computational Study. ChemPhysChem, 2020, 21, 2489-2505.	1.0	5
342	Thiol-Functionalized Ethylene Periodic Mesoporous Organosilica as an Efficient Scavenger for Palladium: Confirming the Homogeneous Character of the Suzuki Reaction. Materials, 2020, 13, 623.	1.3	5

#	Article	IF	CITATIONS
343	Emergence of Metallic Conductivity in Ordered One-Dimensional Coordination Polymer Thin Films upon Reductive Doping. ACS Applied Materials & amp; Interfaces, 2021, 13, 10249-10256.	4.0	5
344	Rigid Nanoporous Urea-Based Covalent Triazine Frameworks for C2/C1 and CO2/CH4 Gas Separation. Molecules, 2021, 26, 3670.	1.7	5
345	Model-based control of iron- and copper oxide particle distributions in porous Î ³ -Al2O3 microspheres through careful tuning of the interactions during impregnation. Materials Chemistry and Physics, 2022, 276, 125428.	2.0	5
346	Chemical sensors based on periodic mesoporous organosilica @NaYF ₄ :Ln ³⁺ nanocomposites. Dalton Transactions, 2022, 51, 11467-11475.	1.6	5
347	Title is missing!. Journal of Materials Science, 1997, 5, 199-206.	1.2	4
348	EPR characterization of vanadium dopant sites in DUT-5(Al). Optical Materials, 2019, 94, 217-223.	1.7	4
349	Combined experimental and computational studies on preferential CO ₂ adsorption over a zinc-based porous framework solid. New Journal of Chemistry, 2020, 44, 1806-1816.	1.4	4
350	N <i>â€</i> Rich Porous Polymer with Isolated Tb ³⁺ â€ions Displays Unique Temperature Dependent Behavior through the Absence of Thermal Quenching. Chemistry - A European Journal, 2020, 26, 15596-15604.	1.7	4
351	Chemical sensors based on a Eu(iii)-centered periodic mesoporous organosilica hybrid material using picolinic acid as an efficient secondary ligand. Dalton Transactions, 2021, 50, 11061-11070.	1.6	4
352	Pore Narrowing of Mesoporous Silica Materials. Materials, 2013, 6, 570-579.	1.3	3
353	Salenâ€decorated Periodic Mesoporous Organosilica: From Metalâ€assisted Epoxidation to Metalâ€free CO 2 Insertion. Chemistry - an Asian Journal, 2021, 16, 2126-2135.	1.7	3
354	A â€~Defective' Conjugated Porous Poly-Azo as Dual Photocatalyst. Catalysts, 2021, 11, 1064.	1.6	3
355	Tuning the Properties of Periodic Mesoporous Organosilica Films for Lowâ€k Application by Gemini Surfactants. ChemPhysChem, 2018, 19, 2295-2298.	1.0	2
356	Ru Catalyst Encapsulated into the Pores of MIL-101 MOF: Direct Visualization by TEM. Materials, 2021, 14, 4531.	1.3	2
357	Ruthenium–Indenylidene Complexes Bearing Saturated N-Heterocyclic Carbenes: Synthesis and Application in Ring-Closing Metathesis Reactions. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 31-38.	0.5	2
358	Metal–Organic-framework Nanoparticles: Synthesis, Characterization and Catalytic Applications. RSC Catalysis Series, 2019, , 132-162.	0.1	2
359	A Novel Malonamide Periodic Mesoporous Organosilica (PMO) for Tuneable Ibuprofen Release. Advanced Porous Materials, 2015, 2, 157-164.	0.3	2
360	Olefin Metathesis Mediated By: - Schiff Base Ru-Alkylidenes -Ru-Alkylidenes Bearing Unsymmetrical NH Ligands. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2007, , 251-263.	0.1	1

#	Article	IF	CITATIONS
361	New N-Heterocyclic Carbene Ligands in Grubbs and Hoveyda–Grubbs Catalysts. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 17-29.	0.5	1
362	Tetraethylammonium tetrakis(1,1,1,5,5,5-hexafluoroacetylacetonato)terbate(III). Acta Crystallographica Section E: Structure Reports Online, 2012, 68, m111-m112.	0.2	1
363	Laser anneal of oxycarbosilane low-k film. , 2016, , .		1
364	Metal-Organic Frameworks in the Field of Liquid Adsorption. , 2016, , 347-356.		1
365	Periodic Mesoporous Organosilica Films with a Tunable Steady‣tate Mesophase. ChemPhysChem, 2017, 18, 2846-2849.	1.0	1
366	The Influence of Preâ€Electrospinning Plasma Treatment on Physicochemical Characteristics of PLA Nanofibers. Macromolecular Materials and Engineering, 2019, 304, 1900391.	1.7	1
367	Identification of vanadium dopant sites in the metal–organic framework DUT-5(Al). Physical Chemistry Chemical Physics, 2021, 23, 7088-7100.	1.3	1
368	Synthesis of Nitrile-Functionalized Polydentate N-Heterocycles as Building Blocks for Covalent Triazine Frameworks. Synthesis, 0, , .	1.2	1
369	Selective copper recovery from ammoniacal waste streams using a systematic biosorption process. Chemosphere, 2022, 286, 131935.	4.2	1
370	INCORPORATED AND SUPPORTED VO _x /MCM-48 CATALYSTS: A COMPARATIVE STUDY. , 2000, , .		0
371	New Mesoporous Templated Silicas (MTS): Merits and Challenges. Key Engineering Materials, 2001, 206-213, 1949-1952.	0.4	Ο
372	Impact of UV wavelength and curing time on the properties of spin-coated low-k films. , 2015, , .		0
373	Effect of Building Block Transformation in Covalent Triazineâ€Based Frameworks for Enhanced CO 2 Uptake and Metalâ€Free Heterogeneous Catalysis. Chemistry - A European Journal, 2020, 26, 1441-1441.	1.7	Ο
374	Structural and Photophysical Properties of Various Polypyridyl Ligands: A Combined Experimental and Computational Study. ChemPhysChem, 2020, 21, 2488-2488.	1.0	0
375	Rücktitelbild: Developing Luminescent Ratiometric Thermometers Based on a Covalent Organic Framework (COF) (Angew. Chem. 5/2020). Angewandte Chemie, 2020, 132, 2144-2144.	1.6	Ο
376	Quantifying the Likelihood of Structural Models through a Dynamically Enhanced Powder Xâ€Ray Diffraction Protocol. Angewandte Chemie, 2021, 133, 8995-9004.	1.6	0
377	Frontispiece: Overview of Nâ€Rich Antennae Investigated in Lanthanideâ€Based Temperature Sensing. Chemistry - A European Journal, 2021, 27, .	1.7	0
378	THE CREATION OF HYDROPHOBIC, STABLE MCM-48/VOx CATALYSTS, USING ALKYLCHLOROSILANES AS COUPLING AGENTS FOR THE DEPOSITION OF VOx SURFACE STRUCTURES. , 2000, , .		0

#	Article	IF	CITATIONS
379	ULTRA-FAST HYDROTHERMAL SYNTHESIS OF DIASTEREOSELECTIVE PURE ETHENYLENE-BRIDGED PERIODIC MESOPOROUS ORGANOSILICAS. , 2008, , .		Ο
380	Sequential adsorption plasma catalytic abatement of toluene using metal oxide loaded MS-13X in packed bed DBD reactor. , 2021, , .		0