Pascal Van Der Voort

List of Publications by Citations

Source: https://exaly.com/author-pdf/2992880/pascal-van-der-voort-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

363 papers

13,032 citations

59 h-index 92 g-index

410 ext. papers

14,962 ext. citations

6.3 avg, IF

6.69 L-index

#	Paper	IF	Citations
363	Periodic Mesoporous Organosilicas: from simple to complex bridges; a comprehensive overview of functions, morphologies and applications. <i>Chemical Society Reviews</i> , 2013 , 42, 3913-55	58.5	385
362	A Detailed Study of Thermal, Hydrothermal, and Mechanical Stabilities of a Wide Range of Surfactant Assembled Mesoporous Silicas. <i>Chemistry of Materials</i> , 2002 , 14, 2317-2324	9.6	311
361	Mixed-metal metal-organic frameworks. <i>Chemical Society Reviews</i> , 2019 , 48, 2535-2565	58.5	292
360	A New Templated Ordered Structure with Combined Micro- and Mesopores and Internal Silica Nanocapsules. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 5873-5877	3.4	267
359	Technologies for Arsenic Removal from Water: Current Status and Future Perspectives. International Journal of Environmental Research and Public Health, 2015, 13, ijerph13010062	4.6	219
358	Systematic study of the chemical and hydrothermal stability of selected <code>EtableIMetal</code> Organic Frameworks. <i>Microporous and Mesoporous Materials</i> , 2016 , 226, 110-116	5.3	197
357	Review of catalytic systems and thermodynamics for the Guerbet condensation reaction and challenges for biomass valorization. <i>Catalysis Science and Technology</i> , 2015 , 5, 3876-3902	5.5	175
356	Latent olefin metathesis catalysts. <i>Chemical Society Reviews</i> , 2009 , 38, 3360-72	58.5	165
355	A General Strategy for the Synthesis of Functionalised UiO-66 Frameworks: Characterisation, Stability and CO2 Adsorption Properties. <i>European Journal of Inorganic Chemistry</i> , 2013 , 2013, 2154-216	6 ∂ ·3	161
354	Synthesis, crystal structures, and luminescence properties of carboxylate based rare-earth coordination polymers. <i>Inorganic Chemistry</i> , 2012 , 51, 11623-34	5.1	160
353	Plugged hexagonal templated silica: a unique micro- and mesoporous composite material with internal silica nanocapsules. <i>Chemical Communications</i> , 2002 , 1010-1	5.8	159
352	Silylation of micro-, meso- and non-porous oxides: a review. <i>Microporous and Mesoporous Materials</i> , 1999 , 28, 217-232	5.3	157
351	MCM-48-Supported Vanadium Oxide Catalysts, Prepared by the Molecular Designed Dispersion of VO(acac)2: A Detailed Study of the Highly Reactive MCM-48 Surface and the Structure and Activity of the Deposited VOx. <i>Journal of Catalysis</i> , 2001 , 197, 160-171	7.3	153
350	Rationalization of the Synthesis of SBA-16: Controlling the Micro- and Mesoporosity. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 9027-9032	3.4	147
349	Surface modification of silica gels with aminoorganosilanes. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 1995 , 98, 235-241	5.1	146
348	Silylation of the Silica Surface A Review. <i>Journal of Liquid Chromatography and Related Technologies</i> , 1996 , 19, 2723-2752	1.3	144
347	Enhanced selectivity of CO(2) over CH(4) in sulphonate-, carboxylate- and iodo-functionalized UiO-66 frameworks. <i>Dalton Transactions</i> , 2013 , 42, 4730-7	4.3	143

(2013-2003)

346	The Influence of the Alcohol Concentration on the Structural Ordering of Mesoporous Silica: Cosurfactant versus Cosolvent. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 10405-10411	3.4	137
345	Missing Linkers: An Alternative Pathway to UiO-66 Electronic Structure Engineering. <i>Chemistry of Materials</i> , 2017 , 29, 3006-3019	9.6	120
344	Understanding Intrinsic Light Absorption Properties of UiO-66 Frameworks: A Combined Theoretical and Experimental Study. <i>Inorganic Chemistry</i> , 2015 , 54, 10701-10	5.1	117
343	Synthesis of High-Quality MCM-48 and MCM-41 by Means of the GEMINI Surfactant Method. Journal of Physical Chemistry B, 1998 , 102, 8847-8851	3.4	115
342	A photoluminescent covalent triazine framework: CO2 adsorption, light-driven hydrogen evolution and sensing of nitroaromatics. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 13450-13457	13	105
341	The remarkable catalytic activity of the saturated metal organic framework V-MIL-47 in the cyclohexene oxidation. <i>Chemical Communications</i> , 2010 , 46, 5085-7	5.8	103
340	Ordered mesoporous materials at the beginning of the third millennium: new strategies to create hybrid and non-siliceous variants. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 347-60	3.6	101
339	Ordered mesoporous phenolic resins: highly versatile and ultra stable support materials. <i>Advances in Colloid and Interface Science</i> , 2012 , 175, 39-51	14.3	99
338	A Ruthenium-Catalyzed Approach to the Friedlider Quinoline Synthesis. <i>European Journal of Organic Chemistry</i> , 2008 , 2008, 1625-1631	3.2	95
337	Influence of water in the reaction of Eminopropyltriethoxysilane with silica gel. A Fourier-transform infrared and cross-polarisation magic-angle-spinning nuclear magnetic resonance study. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1992 , 88, 3197-3200		94
336	Soft templated mesoporous carbons: Tuning the porosity for the adsorption of large organic pollutants. <i>Carbon</i> , 2017 , 116, 528-546	10.4	92
335	Supported Vanadium Oxide Catalysts: Quantitative Spectroscopy, Preferential Adsorption of V4+/5+, and Al2O3Coating of Zeolite Y. <i>Journal of Physical Chemistry B</i> , 1998 , 102, 8005-8012	3.4	91
334	The Role of Silanols in the Modification of Silica Gel with Aminosilanes. <i>Journal of Colloid and Interface Science</i> , 1995 , 170, 71-77	9.3	91
333	The coordinatively saturated vanadium MIL-47 as a low leaching heterogeneous catalyst in the oxidation of cyclohexene. <i>Journal of Catalysis</i> , 2012 , 285, 196-207	7.3	87
332	Luminescent Lanthanide MOFs: A Unique Platform for Chemical Sensing. <i>Materials</i> , 2018 , 11,	3.5	85
331	Synthesis, spectroscopy and catalysis of. <i>Chemistry - A European Journal</i> , 2000 , 6, 2960-70	4.8	80
330	Effect of porosity on the distribution and reactivity of hydroxyl groups on the surface of silica gel. Journal of the Chemical Society, Faraday Transactions, 1991 , 87, 3899		80
329	Bipyridine-Based Nanosized Metal©rganic Framework with Tunable Luminescence by a Postmodification with Eu(III): An Experimental and Theoretical Study. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 11302-11310	3.8	79

328	Quantification of silanol sites for the most common mesoporous ordered silicas and organosilicas: total versus accessible silanols. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 642-50	3.6	79
327	Communication: DMRG-SCF study of the singlet, triplet, and quintet states of oxo-Mn(Salen). <i>Journal of Chemical Physics</i> , 2014 , 140, 241103	3.9	76
326	Covalent triazine frameworks 🗈 sustainable perspective. <i>Green Chemistry</i> , 2020 , 22, 1038-1071	10	75
325	A fluorine-containing hydrophobic covalent triazine framework with excellent selective CO2 capture performance. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 6370-6375	13	74
324	Engineering a Highly Defective Stable UiO-66 with Tunable Lewis- Brfisted Acidity: The Role of the Hemilabile Linker. <i>Journal of the American Chemical Society</i> , 2020 , 142, 3174-3183	16.4	73
323	Metal-Organic Frameworks as Selective or Chiral Oxidation Catalysts. <i>Catalysis Reviews - Science and Engineering</i> , 2014 , 56, 1-56	12.6	73
322	Ship-in-a-bottle CMPO in MIL-101(Cr) for selective uranium recovery from aqueous streams through adsorption. <i>Journal of Hazardous Materials</i> , 2017 , 335, 1-9	12.8	72
321	Biocompatible Zr-based nanoscale MOFs coated with modified poly(Etaprolactone) as anticancer drug carriers. <i>International Journal of Pharmaceutics</i> , 2016 , 509, 208-218	6.5	72
320	A homochiral vanadium-salen based cadmium bpdc MOF with permanent porosity as an asymmetric catalyst in solvent-free cyanosilylation. <i>Chemical Communications</i> , 2016 , 52, 1401-4	5.8	72
319	New Functionalized Metal©rganic Frameworks MIL-47-X (X = ©l, Br, ©H3, ©F3, DH, DCH3): Synthesis, Characterization, and CO2 Adsorption Properties. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 22784-22796	3.8	72
318	Creation of VOx Surface Species on Pure Silica MCM-48 Using Gas-Phase Modification with VO(acac)2. <i>Journal of Physical Chemistry B</i> , 1998 , 102, 585-590	3.4	70
317	Synthesis of Supported Transition Metal Oxide Catalysts by the Designed Deposition of Acetylacetonate Complexes <i>Langmuir</i> , 1999 , 15, 5841-5845	4	67
316	Surface and Structural Properties of Silica Gel in the Modification with EAminopropyltriethoxysilane. <i>Journal of Colloid and Interface Science</i> , 1995 , 174, 86-91	9.3	67
315	Developing Luminescent Ratiometric Thermometers Based on a Covalent Organic Framework (COF). <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 1932-1940	16.4	67
314	Estimation of the distribution of surface hydroxyl groups on silica gel, using chemical modification with trichlorosilane. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1990 , 86, 3751		66
313	Supported vanadium oxide in heterogeneous catalysis: elucidating the structure-activity relationship with spectroscopy. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 2826-32	3.6	64
312	Acetylacetone Covalent Triazine Framework: An Efficient Carbon Capture and Storage Material and a Highly Stable Heterogeneous Catalyst. <i>Chemistry of Materials</i> , 2018 , 30, 4102-4111	9.6	63
311	Mn-salen@MIL101(Al): a heterogeneous, enantioselective catalyst synthesized using a 'bottle around the ship' approach. <i>Chemical Communications</i> , 2013 , 49, 8021-3	5.8	63

(2001-2013)

310	New V(IV)-based metal-organic framework having framework flexibility and high CO2 adsorption capacity. <i>Inorganic Chemistry</i> , 2013 , 52, 113-20	5.1	63
309	Lanthanide Thameleon Multistage Anti-Counterfeit Materials. <i>Advanced Functional Materials</i> , 2017 , 27, 1700258	15.6	62
308	Vanadium-Incorporated MCM-48 Materials: Optimization of the Synthesis Procedure and an in Situ Spectroscopic Study of the Vanadium Species. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 3393-3399	3.4	62
307	Recent advances on the utilization of layered double hydroxides (LDHs) and related heterogeneous catalysts in a lignocellulosic-feedstock biorefinery scheme. <i>Green Chemistry</i> , 2017 , 19, 5269-5302	10	60
306	Removal of arsenic and mercury species from water by covalent triazine framework encapsulated FeO nanoparticles. <i>Journal of Hazardous Materials</i> , 2018 , 353, 312-319	12.8	60
305	Periodic mesoporous organosilicas functionalized with a wide variety of amines for CO2 adsorption. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 9792-9	3.6	59
304	Newly Designed Covalent Triazine Framework Based on Novel N-Heteroaromatic Building Blocks for Efficient CO and H Capture and Storage. <i>ACS Applied Materials & Design Company</i> , 10, 1244-1245	9.5	59
303	Synthesis and activity for ROMP of bidentate Schiff base substituted second generation Grubbs catalysts. <i>Journal of Molecular Catalysis A</i> , 2006 , 260, 221-226		58
302	A 3D-TEM study of the shape of mesopores in SBA-15 and modified SBA-15 materials. <i>Chemical Communications</i> , 2002 , 1632-3	5.8	58
301	Fe3O4@MIL-101 IA Selective and Regenerable Adsorbent for the Removal of As Species from Water. European Journal of Inorganic Chemistry, 2016 , 2016, 4395-4401	2.3	56
300	Partially fluorinated MIL-47 and Al-MIL-53 frameworks: influence of functionalization on sorption and breathing properties. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 3552-61	3.6	56
299	Strongly Reducing (Diarylamino)benzene-Based Covalent Organic Framework for Metal-Free Visible Light Photocatalytic HO Generation. <i>Journal of the American Chemical Society</i> , 2020 , 142, 20107-	2 ¹⁶ 146	56
298	The role of CO2 in the dehydrogenation of propane over WO NO /SiO2. <i>Journal of Catalysis</i> , 2016 , 335, 1-10	7.3	55
297	Exploring new synthetic strategies in the development of a chemically activated Ru-based olefin metathesis catalyst. <i>Dalton Transactions</i> , 2007 , 5201-10	4.3	55
296	Triggering White-Light Emission in a 2D Imine Covalent Organic Framework Through Lanthanide Augmentation. <i>ACS Applied Materials & Empty Interfaces</i> , 2019 , 11, 27343-27352	9.5	54
295	The effect of water on the structure of supported vanadium oxide structures. An FT-RAMAN, in situ DRIFT and in situ UV-VIS diffuse reflectance study. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 1997 , 53, 2181-2187	4.4	54
294	A High-Yield Reproducible Synthesis of MCM-48 Starting from Fumed Silica. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 12771-12777	3.4	54
293	Supported Tantalum Oxide and Supported Vanadia-tantala Mixed Oxides: Structural Characterization and Surface Properties. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 6211-6220	3.4	54

292	Ink-jet printing of YBa2Cu3O7 superconducting coatings and patterns from aqueous solutions. Journal of Materials Chemistry, 2012 , 22, 3717-3726		53
291	Effect of composition and preparation of supported MoO3 catalysts for anisole hydrodeoxygenation. <i>Chemical Engineering Journal</i> , 2018 , 335, 120-132	14.7	51
290	Tuning the Pore Size of Ink-Bottle Mesopores by Atomic Layer Deposition. <i>Chemistry of Materials</i> , 2012 , 24, 1992-1994	9.6	51
289	Spatial arrangement and acid strength effects on acidBase cooperatively catalyzed aldol condensation on aminosilica materials. <i>Journal of Catalysis</i> , 2015 , 325, 19-25	7.3	50
288	New ultrastable mesoporous adsorbent for the removal of mercury ions. <i>Langmuir</i> , 2010 , 26, 10076-83	4	50
287	Base-mediated synthesis of quinolines: an unexpected cyclization reaction between 2-aminobenzylalcohol and ketones. <i>Tetrahedron Letters</i> , 2008 , 49, 6893-6895	2	50
286	Functionalized chitosan adsorbents allow recovery of palladium and platinum from acidic aqueous solutions. <i>Green Chemistry</i> , 2019 , 21, 2295-2306	10	49
285	Au@UiO-66: a base free oxidation catalyst. <i>RSC Advances</i> , 2015 , 5, 22334-22342	3.7	49
284	A new strategy towards ultra stable mesoporous titania with nanosized anatase walls. <i>Chemical Communications</i> , 2003 , 1178-9	5.8	49
283	UiO-66-(SH) as stable, selective and regenerable adsorbent for the removal of mercury from water under environmentally-relevant conditions. <i>Faraday Discussions</i> , 2017 , 201, 145-161	3.6	48
282	Vanadium metalBrganic frameworks: structures and applications. <i>New Journal of Chemistry</i> , 2014 , 38, 1853-1867	3.6	48
281	Progress in hydrometallurgical technologies to recover critical raw materials and precious metals from low-concentrated streams. <i>Resources, Conservation and Recycling</i> , 2019 , 142, 177-188	11.9	48
280	Antibacterial activity of a porous silver doped TiO2 coating on titanium substrates synthesized by plasma electrolytic oxidation. <i>Applied Surface Science</i> , 2020 , 500, 144235	6.7	48
279	Improved ruthenium catalysts for the modified Friedlaender quinoline synthesis. <i>New Journal of Chemistry</i> , 2007 , 31, 1572	3.6	47
278	Thermal Decomposition of VO(acac)2 Deposited on the Surfaces of Silica and Alumina. <i>Langmuir</i> , 1998 , 14, 106-112	4	47
277	Synthesis of Stable, Hydrophobic MCM-48/VOxCatalysts Using Alkylchlorosilanes as Coupling Agents for the Molecular Designed Dispersion of VO(acac)2. <i>Journal of Physical Chemistry B</i> , 1999 , 103, 10102-10108	3.4	47
276	Elucidating the Vibrational Fingerprint of the Flexible Metal-Organic Framework MIL-53(Al) Using a Combined Experimental/Computational Approach. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 2734-274	<i>6</i> ^{3.8}	46
275	The Uses of Polynuclear Metal Complexes to Develop Designed Dispersions of Supported Metal Oxides: Part I. Synthesis and Characterization. <i>Journal of Materials Science</i> , 1997 , 5, 169-197		46

(2007-2000)

274	Synthesis and characterization of alumina-supported vanadium oxide catalysts prepared by the molecular designed dispersion of VO(acac)2 complexes. <i>Physical Chemistry Chemical Physics</i> , 2000 , 2, 2673-2680	3.6	46	
273	A MoVI grafted Metal Organic Framework: Synthesis, characterization and catalytic investigations. <i>Journal of Catalysis</i> , 2014 , 316, 201-209	7.3	45	
272	Synthesis and characterization of supported vanadium oxides by adsorption of the acetylacetonate complex. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1996 , 92, 3635		45	
271	Synthesis, Structural Characterization, and Catalytic Performance of a Vanadium-Based Metal (Drganic Framework (COMOC-3). European Journal of Inorganic Chemistry, 2012 , 2012, 2819-2827	2.3	44	
270	Preparation of supported vanadium oxide catalysts. Adsorption and thermolysis of vanadyl acetylacetonate on a silica support. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1996 , 92, 843		44	
269	Metal Organic Frameworks Based Materials for Heterogeneous Photocatalysis. <i>Molecules</i> , 2018 , 23,	4.8	44	
268	Carbamoylmethylphosphine Oxide-Functionalized MIL-101(Cr) as Highly Selective Uranium Adsorbent. <i>Analytical Chemistry</i> , 2017 , 89, 5678-5682	7.8	43	
267	Tuning the Pore Geometry of Ordered Mesoporous Carbons for Enhanced Adsorption of Bisphenol-A. <i>Materials</i> , 2015 , 8, 1652-1665	3.5	43	
266	Bis-coordination of N-(Alkyl)-NE(2,6-diisopropylphenyl) Heterocyclic Carbenes to Grubbs Catalysts. <i>Organometallics</i> , 2007 , 26, 1052-1056	3.8	43	
265	Growth of Iron Oxide on Yttria-Stabilized Zirconia by Atomic Layer Deposition. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 13146-13153	3.4	43	
264	l-proline modulated zirconium metal organic frameworks: Simple chiral catalysts for the aldol addition reaction. <i>Journal of Catalysis</i> , 2018 , 365, 36-42	7.3	43	
263	POM@IL-MOFs Inclusion of POMs in ionic liquid modified MOFs to produce recyclable oxidation catalysts. <i>Catalysis Science and Technology</i> , 2017 , 7, 1478-1487	5.5	42	
262	Generation of composites for bone tissue-engineering applications consisting of gellan gum hydrogels mineralized with calcium and magnesium phosphate phases by enzymatic means. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2016 , 10, 938-954	4.4	42	
261	Spectroscopic characterization of an MoOx layer on the surface of silica. An evaluation of the molecular designed dispersion method. <i>Physical Chemistry Chemical Physics</i> , 1999 , 1, 4099-4104	3.6	42	
260	Vanadium Analogues of Nonfunctionalized and Amino-Functionalized MOFs with MIL-101 Topology Bynthesis, Characterization, and Gas Sorption Properties. <i>European Journal of Inorganic Chemistry</i> , 2012 , 2012, 2481-2486	2.3	41	
259	Atomic layer deposition-based tuning of the pore size in mesoporous thin films studied by in situ grazing incidence small angle X-ray scattering. <i>Nanoscale</i> , 2014 , 6, 14991-8	7.7	40	
258	Thermal Transformations of Chromium Acetylacetonate on Silica Surface. <i>Journal of Colloid and Interface Science</i> , 1997 , 189, 144-150	9.3	40	
257	Ultra-fast hydrothermal synthesis of diastereoselective pure ethenylene-bridged periodic mesoporous organosilicas. <i>Chemical Communications</i> , 2007 , 2261-3	5.8	39	

256	Silanol-Assisted Aldol Condensation on Aminated Silica: Understanding the Arrangement of Functional Groups. <i>ChemCatChem</i> , 2014 , 6, 255-264	5.2	38
255	Ultra-low-k cyclic carbon-bridged PMO films with a high chemical resistance. <i>Journal of Materials Chemistry</i> , 2012 , 22, 8281		38
254	Reproducible synthesis of high quality MCM-48 by extraction and recuperation of the gemini surfactant. <i>Physical Chemistry Chemical Physics</i> , 2001 , 3, 127-131	3.6	38
253	100% thiol-functionalized ethylene PMOs prepared by "thiol acid-ene" chemistry. <i>Chemical Communications</i> , 2013 , 49, 2344-6	5.8	37
252	Synthesized mercaptopropyl nanoporous resins in DGT probes for determining dissolved mercury concentrations. <i>Talanta</i> , 2011 , 87, 262-7	6.2	37
251	Stabilized MCM-48/VOx catalysts: synthesis, characterization and catalytic activity. <i>Catalysis Today</i> , 2001 , 68, 119-128	5.3	37
250	Visible and NIR Upconverting Er3+\(\text{M} b \) 3+ Luminescent Nanorattles and Other Hybrid PMO-Inorganic Structures for In Vivo Nanothermometry. <i>Advanced Functional Materials</i> , 2020 , 30, 2003	1 6 7.6	36
249	Effects of amine structure and base strength on acidBase cooperative aldol condensation. <i>Catalysis Today</i> , 2015 , 246, 35-45	5.3	36
248	Fast and tunable synthesis of ZrO2 nanocrystals: mechanistic insights into precursor dependence. <i>Inorganic Chemistry</i> , 2015 , 54, 3469-76	5.1	35
247	Indenylidene Complexes of Ruthenium Bearing NHC Ligands Estructure Elucidation and Performance as Catalysts for Olefin Metathesis. <i>European Journal of Organic Chemistry</i> , 2009 , 2009, 655	5-665	35
246	Controlled Deposition of Iron Oxide on the Surface of Zirconia by the Molecular Designed Dispersion of Fe(acac)3: A Spectroscopic Study. <i>Langmuir</i> , 2002 , 18, 4420-4425	4	35
245	Optimization of soft templated mesoporous carbon synthesis using Definitive Screening Design. <i>Chemical Engineering Journal</i> , 2015 , 259, 126-134	14.7	34
244	Exploring Lanthanide Doping in UiO-66: A Combined Experimental and Computational Study of the Electronic Structure. <i>Inorganic Chemistry</i> , 2018 , 57, 5463-5474	5.1	34
243	Mechanistic insight into the cyclohexene epoxidation with VO(acac)2 and tert-butyl hydroperoxide. <i>Journal of Catalysis</i> , 2012 , 294, 1-18	7.3	34
242	Formation and functionalization of surface DielsAlder adducts on ethenylene-bridged periodic mesoporous organosilica. <i>Journal of Materials Chemistry</i> , 2011 , 21, 10990		33
241	In situ generation of highly active olefin metathesis initiators. <i>Journal of Organometallic Chemistry</i> , 2006 , 691, 5482-5486	2.3	33
240	Metal-free activation of molecular oxygen by covalent triazine frameworks for selective aerobic oxidation. <i>Science Advances</i> , 2020 , 6, eaaz2310	14.3	32
239	Mesoporous phenolic resin and mesoporous carbon for the removal of S-Metolachlor and Bentazon herbicides. <i>Chemical Engineering Journal</i> , 2014 , 251, 92-101	14.7	32

238	Bimetallic Drganic Framework as a Zero-Leaching Catalyst in the Aerobic Oxidation of Cyclohexene. <i>ChemCatChem</i> , 2013 , 5, 3657-3664	5.2	32	
237	Periodic Mesoporous Organosilicas Consisting of 3D Hexagonally Ordered Interconnected Globular Pores. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 5556-5562	3.8	32	
236	Ethenylene-bridged periodic mesoporous organosilicas with ultra-large mesopores. <i>Chemical Communications</i> , 2009 , 4052-4	5.8	32	
235	Magnetism of iron-containing MCM-41 spheres. <i>Journal of Magnetism and Magnetic Materials</i> , 2004 , 280, 31-36	2.8	32	
234	Atomic Layer Deposition of Pt Nanoparticles within the Cages of MIL-101: A Mild and Recyclable Hydrogenation Catalyst. <i>Nanomaterials</i> , 2016 , 6,	5.4	32	
233	A Bne-steplulfonic acid PMO as a recyclable acid catalyst. <i>Journal of Catalysis</i> , 2015 , 326, 139-148	7.3	31	
232	Lanthanide-Grafted Bipyridine Periodic Mesoporous Organosilicas (BPy-PMOs) for Physiological Range and Wide Temperature Range Luminescence Thermometry. <i>ACS Applied Materials & Interfaces</i> , 2020 , 12, 13540-13550	9.5	31	
231	Aqueous CSD approach for the growth of novel, lattice-tuned LaxCe1NOFepitaxial layers. <i>Journal of Materials Chemistry</i> , 2012 , 22, 8476		31	
230	TiOx-VOx Mixed Oxides on SBA-15 Support Prepared by the Designed Dispersion of Acetylacetonate Complexes: Spectroscopic Study of the Reaction Mechanisms. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 3794-3800	3.4	31	
229	Template extraction from porous clay heterostructures: Influence on the porosity and the hydrothermal stability of the materials. <i>Physical Chemistry Chemical Physics</i> , 2002 , 4, 2818-2823	3.6	31	
228	Grafting of a Eu-tfac complex on to a Tb-metal organic framework for use as a ratiometric thermometer. <i>Dalton Transactions</i> , 2017 , 46, 12717-12723	4.3	30	
227	Stabilization of Colloidal Ti, Zr, and Hf Oxide Nanocrystals by Protonated Tri-n-octylphosphine Oxide (TOPO) and Its Decomposition Products. <i>Chemistry of Materials</i> , 2017 , 29, 10233-10242	9.6	30	
226	Comparison of different solid adsorbents for the removal of mobile pesticides from aqueous solutions. <i>Adsorption</i> , 2015 , 21, 243-254	2.6	30	
225	Ti-functionalized NH2-MIL-47: An effective and stable epoxidation catalyst. <i>Catalysis Today</i> , 2013 , 208, 97-105	5.3	30	
224	The Adsorption of VO(acac)2 on a Mesoporous Silica Support by Liquid Phase and Gas Phase Modification to Prepare Supported Vanadium Oxide Catalysts. <i>Journal of Porous Materials</i> , 1998 , 5, 317	7- 321 4	30	
223	Global and regional parameters of dyssynchrony in ischemic and nonischemic cardiomyopathy. <i>American Journal of Cardiology</i> , 2005 , 95, 421-3	3	30	
222	Ethenylene-Bridged Periodic Mesoporous Organosilicas: From E to Z. <i>Chemistry of Materials</i> , 2009 , 21, 5792-5800	9.6	29	
221	Catalytic oxidative desulfurization of model and real diesel over a molybdenum anchored metal-organic framework. <i>Microporous and Mesoporous Materials</i> , 2019 , 277, 245-252	5.3	29	

220	Sorption and breathing properties of difluorinated MIL-47 and Al-MIL-53 frameworks. <i>Microporous and Mesoporous Materials</i> , 2013 , 181, 175-181	5.3	28
219	Poly(ethylene oxide)-b-poly(L-lactide) diblock copolymer/carbon nanotube-based nanocomposites: LiCl as supramolecular structure-directing agent. <i>Biomacromolecules</i> , 2011 , 12, 4086-94	6.9	28
218	Fast and convenient base-mediated synthesis of 3-substituted quinolines. <i>Tetrahedron Letters</i> , 2009 , 50, 201-203	2	28
217	A Visible-Light-Harvesting Covalent Organic Framework Bearing Single Nickel Sites as a Highly Efficient Sulfur-Carbon Cross-Coupling Dual Catalyst. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 10820-10827	16.4	28
216	Sustainable iron-based oxygen carriers for Chemical Looping for Hydrogen Generation. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 1374-1391	6.7	28
215	Bioinspired, biomimetic, double-enzymatic mineralization of hydrogels for bone regeneration with calcium carbonate. <i>Materials Letters</i> , 2017 , 190, 13-16	3.3	26
214	The role of water in the reusability of aminated silica catalysts for aldol reactions. <i>Journal of Catalysis</i> , 2018 , 361, 51-61	7.3	26
213	Optimization of spray dried attrition-resistant iron based oxygen carriers for chemical looping reforming. <i>Chemical Engineering Journal</i> , 2017 , 309, 824-839	14.7	26
212	Gas phase adsorption of alkanes, alkenes and aromatics on the sulfone-DUT-5 Metal Organic Framework. <i>Microporous and Mesoporous Materials</i> , 2015 , 206, 217-225	5.3	26
211	Ultra stable ordered mesoporous phenol/formaldehyde polymers as a heterogeneous support for vanadium oxide. <i>Chemical Communications</i> , 2008 , 4475-7	5.8	26
21 0	Synthesis of stable and directly usable hexagonal mesoporous silica by efficient amine extraction in acidified water. <i>Chemical Communications</i> , 2000 , 2489-2490	5.8	26
209	Modelling of the hydroxyl group population using an energetic analysis of the temperature-programmed desorption of pyridine from silica gel. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1992 , 88, 723		26
208	Temperature dependent NIR emitting lanthanide-PMO/silica hybrid materials. <i>Dalton Transactions</i> , 2017 , 46, 7878-7887	4.3	25
207	Enzymatic, urease-mediated mineralization of gellan gum hydrogel with calcium carbonate, magnesium-enriched calcium carbonate and magnesium carbonate for bone regeneration applications. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2017 , 11, 3556-3566	4.4	25
206	Mechanochemical Synthesis of a New Triptycene-Based Imine-Linked Covalent Organic Polymer for Degradation of Organic Dye. <i>Crystal Growth and Design</i> , 2019 , 19, 2525-2530	3.5	25
205	Eu3+@PMO: synthesis, characterization and luminescence properties. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 2909-2917	7.1	25
204	Adsorption and Separation of Small Hydrocarbons on the Flexible, Vanadium-Containing MOF, COMOC-2. <i>Langmuir</i> , 2015 , 31, 5063-70	4	25
203	Microwave induced "egg yolk" structure in Cr/V-MIL-53. <i>Chemical Communications</i> , 2017 , 53, 8478-8481	5.8	25

(2020-2012)

Synthesis, characterization and sorption properties of NH2-MIL-47. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 15562-70	3.6	25	
Tunable Large Pore Mesoporous Carbons for the Enhanced Adsorption of Humic Acid. <i>Langmuir</i> , 2017 , 33, 6769-6777	4	24	
Dialdehyde carboxymethyl cellulose cross-linked chitosan for the recovery of palladium and platinum from aqueous solution. <i>Reactive and Functional Polymers</i> , 2019 , 141, 145-154	4.6	24	
An anionic metal-organic framework as a platform for charge-and size-dependent selective removal of cationic dyes. <i>Dyes and Pigments</i> , 2018 , 156, 332-337	4.6	24	
Hydrogenation of Furfural with a PtBn Catalyst: The Suitability to Sustainable Industrial Application. <i>Organic Process Research and Development</i> , 2016 , 20, 1917-1929	3.9	24	
Synthesis, characterization and sorption properties of functionalized Cr-MIL-101-X (X=E, Cl, Br, CH3, CGH3, CCH3)2) materials. <i>Journal of Solid State Chemistry</i> , 2016 , 238, 195-202	3.3	24	
Tuning the acidicBasic properties by Zn-substitution in MgAl hydrotalcites as optimal catalysts for the aldol condensation reaction. <i>Journal of Materials Science</i> , 2017 , 52, 628-642	4.3	24	
Supramolecular design of high-performance poly(L-lactide)/carbon nanotube nanocomposites: from melt-processing to rheological, morphological and electrical properties. <i>Journal of Materials Chemistry</i> , 2011 , 21, 16190		23	
Amine-containing (nano-) Periodic Mesoporous Organosilica and its application in catalysis, sorption and luminescence. <i>Microporous and Mesoporous Materials</i> , 2020 , 291, 109687	5.3	23	
Polar protic solvent-trapping polymorphism of the HgII-hydrazone coordination polymer: experimental and theoretical findings. <i>CrystEngComm</i> , 2017 , 19, 3017-3025	3.3	22	
Thiol-ethylene bridged PMO: A high capacity regenerable mercury adsorbent via intrapore mercury thiolate crystal formation. <i>Journal of Hazardous Materials</i> , 2017 , 339, 368-377	12.8	22	
Chemical sensors based on nano-sized lanthanide-grafted periodic mesoporous organosilica hybrid materials. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 8109-8119	7.1	22	
Immobilization of Ir(I) complex on covalent triazine frameworks for C H borylation reactions: A combined experimental and computational study. <i>Journal of Catalysis</i> , 2019 , 371, 135-143	7.3	22	
Enzymatic mineralization of silk scaffolds. <i>Macromolecular Bioscience</i> , 2014 , 14, 991-1003	5.5	22	
Developing a new and versatile ordered mesoporous organosilica as a pH and temperature stable chromatographic packing material. <i>RSC Advances</i> , 2015 , 5, 5546-5552	3.7	22	
Spherical mesoporous silica particles by spray drying: Doubling the retention factor of HPLC columns. <i>Microporous and Mesoporous Materials</i> , 2011 , 142, 282-291	5.3	22	
Gas-phase deposition and thermal transformations of Cr(acac)3 on the surface of alumina supports. Journal of the Chemical Society, Faraday Transactions, 1997 , 93, 3191-3196		22	
Developing Luminescent Ratiometric Thermometers Based on a Covalent Organic Framework (COF). <i>Angewandte Chemie</i> , 2020 , 132, 1948-1956	3.6	22	
	Tunable Large Pore Mesoporous Carbons for the Enhanced Adsorption of Humic Acid. <i>Langmuir</i> , 2017, 33, 6769-6777 Dialdehyde carboxymethyl cellulose cross-linked chitosan for the recovery of palladium and platinum from aqueous solution. <i>Reactive and Functional Polymers</i> , 2019, 141, 145-154 An anionic metal-organic framework as a platform for charge-and size-dependent selective removal of cationic dyes. <i>Dyes and Pigments</i> , 2018, 156, 332-337 Hydrogenation of Furfural with a PtBn Catalyst: The Suitability to Sustainable Industrial Application. <i>Organic Process Research and Development</i> , 2016, 20, 1917-1929 Synthesis, characterization and sorption properties of functionalized Cr-MIL-101-X (X=B, El, Br, ElH3, IG6H4, Bz, ICH3)2) materials. <i>Journal of Solid State Chemistry</i> , 2016, 238, 195-202 Tuning the acidicBasic properties by Zn-substitution in MgBl hydrotalcites as optimal catalysts for the aldol condensation reaction. <i>Journal of Materials Science</i> , 2017, 52, 628-642 Supramolecular design of high-performance poly(L-lactide)/carbon nanotube nanocomposites: from melt-processing to rheological, morphological and electrical properties. <i>Journal of Materials Chemistry</i> , 2011, 21, 15190 Amine-containing (nano-) Periodic Mesoporous Organosilica and its application in catalysis, sorption and luminescence. <i>Microporous and Mesoporous Materials</i> , 2020, 291, 109687 Polar protic solvent-trapping polymorphism of the Hgll-hydrazone coordination polymer: experimental and theoretical findings. <i>CrystEngComm</i> , 2017, 19, 3017-3025 Thiol-ethylene bridged PMO: A high capacity regenerable mercury adsorbent via intrapore mercury thiolate crystal formation. <i>Journal of Hazardous Materials</i> , 2017, 339, 368-377 Chemical sensors based on nano-sized lanthanide-grafted periodic mesoporous organosilica hybrid materials. <i>Journal of Materials Chemistry C</i> , 2019, 7, 8109-8119 Immobilization of Ir(I) complex on covalent triazine frameworks for C H borylation reactions: A combined experimental and computational study. <i>Journal of </i>	Tunable Large Pore Mesoporous Carbons for the Enhanced Adsorption of Humic Acid. Langmuir, 2017, 33, 6769-6777 4 Dialdehyde carboxymethyl cellulose cross-linked chitosan for the recovery of palladium and platinum from aqueous solution. Reactive and Functional Polymers, 2019, 141, 145-154 An anionic metal-organic framework as a platform for charge-and size-dependent selective removal of cationic dyes. Dyes and Pigments, 2018, 156, 332-337 Hydrogenation of Furfural with a PtBn Catalyst: The Suitability to Sustainable Industrial Application. Organic Process Research and Development, 2016, 20, 1917-1929 39 Synthesis, characterization and sorption properties of functionalized Cr-MIL-101-X (X=B, II, Br, IIH.3, IIGH4, E2, (ICH3)2) materials. Journal of Solid State Chemistry, 2016, 238, 195-202 Tuning the acidicBasic properties by Zn-substitution in MgBl hydrotalcites as optimal catalysts for the aldol condensation reaction. Journal of Materials Science, 2017, 52, 628-642 Supramolecular design of high-performance poly(L-lactide)/carbon nanotube nanocomposites: from melt-processing to rheological, morphological and electrical properties. Journal of Materials Chemistry, 2011, 21, 16190 Amine-containing (nan-)- Periodic Mesoporous Organosilica and Its application in catalysis, sorption and luminescence. Microparous and Mesoporous Materials, 2020, 291, 109687 53 Polar protic solven-trapping polymorphism of the Hgll-hydrazone coordination polymer: experimental and theoretical findings. CrystengComm, 2017, 19, 3017-3025 33 Thiol-ethylene bridged PMO: A high capacity regenerable mercury adsorbent via intrapore mercury thiolate crystal formation. Journal of Hazardous Materials, 2017, 339, 368-377 Chemical sensors based on nano-sized lanthanide-grafted periodic mesoporous organosilica hybrid materials. Journal of Materials Chemistry C, 2019, 7, 8109-8119 Immobilization of Ir(l) complex on covalent triazine frameworks for C H borylation reactions: A combined experimental and computational study. Journal of Catalys	Tunable Large Pore Mesoporous Carbons for the Enhanced Adsorption of Humic Acid. Langmuir, 2017, 33, 6769-6777 Dialdehyde carboxymethyl cellulose cross-linked chitosan for the recovery of palladium and platinum from aqueous solution. Reactive and Functional Polymers, 2019, 141, 145-154 46 24 An anionic metal-organic framework as a platform for charge-and size-dependent selective removal of cationic dyes. Dyes and Plagments, 2018, 156, 332-337 Hydrogenation of Furfural with a PtBn Catalyst: The Suitability to Sustainable Industrial Application. Organic Process Research and Development, 2016, 20, 1917-1929 Synthesis, characterization and sorption properties of functionalized Cr-MIL-101-X (X=B, III, Br, III+3, III-H3, III-

184	Novel injectable, self-gelling hydrogel-microparticle composites for bone regeneration consisting of gellan gum and calcium and magnesium carbonate microparticles. <i>Biomedical Materials (Bristol)</i> , 3. 2016 , 11, 065011	.5	21
183	Development of Covalent Triazine Frameworks as Heterogeneous Catalytic Supports. <i>Polymers</i> , 2019 , 11,	5	21
182	Facile synthesis and gas adsorption behavior of new functionalized Al-MIL-101-X (XI IH3, NO2, DCH3, IGH4, IE2, ICH3)2, IOCH3)2) materials. <i>Microporous and Mesoporous Materials</i> , 2015 , 215, 91-97	-3	21
181	POM@MOF Hybrids: Synthesis and Applications. <i>Catalysts</i> , 2020 , 10, 578		21
180	An aliphatic hexene-covalent triazine framework for selective acetylene/methane and ethylene/methane separation. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 13188-13196	3	20
179	White Light Emission Properties of Defect Engineered Metal©rganic Frameworks by Encapsulation of Eu3+ and Tb3+. <i>Crystal Growth and Design</i> , 2019 , 19, 6339-6350	.5	20
178	Evaluation of phenylene-bridged periodic mesoporous organosilica as a stationary phase for solid phase extraction. <i>Journal of Chromatography A</i> , 2014 , 1370, 25-32	5	20
177	Atomic Layer Deposition of Titanium and Vanadium Oxide on Mesoporous Silica and Phenol/Formaldehyde Resins The Effect of the Support on the Liquid Phase Epoxidation of 2. Cyclohexene. <i>European Journal of Inorganic Chemistry</i> , 2012 , 2012, 251-260	.3	20
176	Tuning the architecture and properties of microstructured yttrium tungstate oxide hydroxide and lanthanum tungstate. <i>Dalton Transactions</i> , 2013 , 42, 5471-9	3	20
175	Controlled Reduction of the Acid Site Density of SAPO-34 Molecular Sieve by Means of Silanation and Disilanation. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 3161-3167	·4	20
174	Incorporation of Transition Metal Ions in Aluminophosphate Molecular Sieves with AST Structure. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 2677-2686	·4	20
173	Characterization of a TiCl4-modified silica surface by means of quantitative surface analysis. Physical Chemistry Chemical Physics, 1999, 1, 2569-2572	.6	20
172	Enhanced gas sorption and breathing properties of the new sulfone functionalized COMOC-2 metal organic framework. <i>Dalton Transactions</i> , 2016 , 45, 9485-91	3	20
171	Enzymatically biomineralized chitosan scaffolds for tissue-engineering applications. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2017 , 11, 1500-1513	4	19
170	Periodic Mesoporous Organosilica Functionalized with Sulfonic Acid Groups as Acid Catalyst for Glycerol Acetylation. <i>Materials</i> , 2013 , 6, 3556-3570	.5	19
169	Modelling of the reaction-phase interaction of Elaminopropyltriethoxysilane with silica. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1993 , 89, 2037-2040		19
168	Illustrating the Role of Quaternary-N of BINOL Covalent Triazine-Based Frameworks in Oxygen Reduction and Hydrogen Evolution Reactions. <i>ACS Applied Materials & District Research</i> , 2020, 12, 44689-440.	699	19
167	Processing and characterization of Fe-based oxygen carriers for chemical looping for hydrogen production. <i>International Journal of Greenhouse Gas Control</i> , 2018 , 70, 12-21	2	18

166	A cheap mesoporous silica from fly ash as an outstanding adsorbent for sulfate in water. <i>Microporous and Mesoporous Materials</i> , 2018 , 272, 184-192	5.3	18	
165	Catalytic Performance of Vanadium MIL-47 and Linker-Substituted Variants in the Oxidation of Cyclohexene: A Combined Theoretical and Experimental Approach. <i>ChemPlusChem</i> , 2014 , 79, 1183-119	7 ^{2.8}	18	
164	Hydrophobic high quality ring PMOs with an extremely high stability. <i>Journal of Materials Chemistry</i> , 2010 , 20, 1709		18	
163	On the synthesis of vanadium containing molecular sieves by experimental design from a VOSO4IbH2OIAl(iPrO)3IPr2NHIH2O gel: occurrence of VAPO-41 as a secondary structure in the synthesis of VAPO-11. <i>Microporous and Mesoporous Materials</i> , 2000 , 39, 493-507	5.3	18	
162	Direct Imaging of ALD Deposited Pt Nanoclusters inside the Giant Pores of MIL-101. <i>Particle and Particle Systems Characterization</i> , 2016 , 33, 382-387	3.1	18	
161	In Situ Electron Paramagnetic Resonance and X-ray Diffraction Monitoring of Temperature-Induced Breathing and Related Structural Transformations in Activated V-Doped MIL-53(Al). <i>Journal of Physical Chemistry C</i> , 2016 , 120, 17400-17407	3.8	18	
160	Direct Synthesis of an Iridium(III) Bipyridine Metal Drganic Framework as a Heterogeneous Catalyst for Aerobic Alcohol Oxidation. <i>ChemCatChem</i> , 2016 , 8, 3672-3679	5.2	18	
159	Enrichment of enzymatically mineralized gellan gum hydrogels with phlorotannin-rich Ecklonia cava extract Seanol([]) to endow antibacterial properties and promote mineralization. <i>Biomedical Materials (Bristol)</i> , 2016 , 11, 045015	3.5	18	
158	Catalytic carpets: Pt@MIL-101@electrospun PCL, a surprisingly active and robust hydrogenation catalyst. <i>Journal of Catalysis</i> , 2018 , 360, 81-88	7.3	17	
157	Facile Synthesis of Cooperative AcidBase Catalysts by Clicking Cysteine and Cysteamine on an Ethylene-Bridged Periodic Mesoporous Organosilica. <i>European Journal of Inorganic Chemistry</i> , 2016 , 2016, 2144-2151	2.3	17	
156	Covalent immobilization of the Jacobsen catalyst on mesoporous phenolic polymer: A highly enantioselective and stable asymmetric epoxidation catalyst. <i>Materials Chemistry and Physics</i> , 2013 , 141, 967-972	4.4	17	
155	A new procedure to seal the pores of mesoporous low-k films with precondensed organosilica oligomers. <i>Chemical Communications</i> , 2012 , 48, 2797-9	5.8	17	
154	Isomeric periodic mesoporous organosilicas with controllable properties. <i>Journal of Materials Chemistry</i> , 2009 , 19, 8839		17	
153	Development of Stable Oxygen Carrier Materials for Chemical Looping Processes A Review. <i>Catalysts</i> , 2020 , 10, 926	4	17	
152	Ni-Cu Hydrotalcite-Derived Mixed Oxides as Highly Selective and Stable Catalysts for the Synthesis of Branched Bioalcohols by the Guerbet Reaction. <i>ChemSusChem</i> , 2016 , 9, 3196-3205	8.3	16	
151	Sensing the framework state and guest molecules in MIL-53(Al) via the electron paramagnetic resonance spectrum of V dopant ions. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 24545-24554	3.6	16	
150	Siloxane bridges as reactive sites on silica gel. Fourier transform infraredphotoacoustic spectroscopic analysis of the chemisorption of diborane. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1990 , 86, 3747-3750		16	
149	Effect of Building Block Transformation in Covalent Triazine-Based Frameworks for Enhanced CO Uptake and Metal-Free Heterogeneous Catalysis. <i>Chemistry - A European Journal</i> , 2020 , 26, 1548-1557	4.8	16	

148	Hydrogen Clathrates: Next Generation Hydrogen Storage Materials. <i>Energy Storage Materials</i> , 2021 , 41, 69-107	19.4	16
147	High-nitrogen containing covalent triazine frameworks as basic catalytic support for the Cu-catalyzed Henry reaction. <i>Journal of Catalysis</i> , 2019 , 375, 242-248	7.3	15
146	Functionalized periodic mesoporous organosilicas: from metal free catalysis to sensing. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 14060-14069	13	15
145	Titania-functionalized diatom frustules as photocatalyst for indoor air purification. <i>Applied Catalysis B: Environmental</i> , 2018 , 226, 303-310	21.8	15
144	Functionalized metal-organic-framework CMPO@MIL-101(Cr) as a stable and selective rare earth adsorbent. <i>Journal of Materials Science</i> , 2016 , 51, 5019-5026	4.3	15
143	Synthesis of sulphonated mesoporous phenolic resins and their application in esterification and asymmetric aldol reactions. <i>Materials Chemistry and Physics</i> , 2013 , 138, 131-139	4.4	15
142	Multi-frequency (S, X, Q and W-band) EPR and ENDOR Study of Vanadium(IV) Incorporation in the Aluminium Metal-Organic Framework MIL-53. <i>ChemPhysChem</i> , 2015 , 16, 2968-73	3.2	15
141	Comparative study of ethylene- and ethenylene-bridged periodic mesoporous organosilicas. <i>Microporous and Mesoporous Materials</i> , 2010 , 131, 68-74	5.3	15
140	Spectroscopic evidence of thermally induced metamorphosis in ethenylene-bridged periodic mesoporous organosilicas. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 5349-52	3.6	15
139	Some Precautions when Determining the Silanol Number, Using Chemical Modification with Methylchlorosilanes. <i>Journal of Colloid and Interface Science</i> , 1993 , 157, 518-519	9.3	15
138	Designing advanced functional periodic mesoporous organosilicas for biomedical applications Electrodes. <i>AIMS Materials Science</i> , 2014 , 1, 70-86	1.9	15
137	Nanothermometers based on lanthanide incorporated Periodic Mesoporous Organosilica. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 4222-4229	7.1	14
136	Lanthanide grafted phenanthroline-polymer for physiological temperature range sensing. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 10972-10980	7.1	14
135	A simple room-temperature synthesis of mesoporous silica rods with tunable size and porosity. Journal of Nanoparticle Research, 2013 , 15, 1	2.3	14
134	Molecular Dispersion of Metal Complexes within Zeolitic Solids: An Alternative Way to Prepare Supported MOx Catalysts. <i>Journal of Porous Materials</i> , 1998 , 5, 305-316	2.4	14
133	Secondary metathesis with Grubbs catalysts in the 1,4-polybutadiene system. <i>Catalysis Communications</i> , 2008 , 9, 1054-1059	3.2	14
132	The synthesis of stable, hydrophobic MCM-48/VOx catalysts, using alkylchlorosilanes as coupling agents for the molecular designed dispersion of VO(acac)2. <i>Microporous and Mesoporous Materials</i> , 2000 , 38, 385-390	5.3	14
131	AlOxCoating of Ultrastable Zeolite Y:□A Possible Method for Vanadium Passivation of FCC Catalysts. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 9195-9202	3.4	14

130	Mechanical Strength of Micelle-Templated Silicas (MTS). <i>Studies in Surface Science and Catalysis</i> , 2000 , 665-672	1.8	14
129	Light-Emitting Lanthanide Periodic Mesoporous Organosilica (PMO) Hybrid Materials. <i>Materials</i> , 2020 , 13,	3.5	13
128	Mineralization of gellan gum hydrogels with calcium and magnesium carbonates by alternate soaking in solutions of calcium/magnesium and carbonate ion solutions. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2018 , 12, 1825-1834	4.4	13
127	Influence of the initial iron concentration on the iron-loading in MCM-41 and thermal decomposition of the supported iron complexes. <i>Microporous and Mesoporous Materials</i> , 2005 , 79, 299-3	3∳3	13
126	Plugged Hexagonal Mesoporous Templated Silica: A unique micro- and mesoporous material with internal silica nanocapsules <i>Studies in Surface Science and Catalysis</i> , 2002 , 141, 45-52	1.8	13
125	Plasma treatment effects on bulk properties of polycaprolactone nanofibrous mats fabricated by uncommon AC electrospinning: A comparative study. <i>Surface and Coatings Technology</i> , 2020 , 399, 12620	o 3 ·4	13
124	Periodic mesoporous organosilicas as porous matrix for heterogeneous lyophobic systems. <i>Microporous and Mesoporous Materials</i> , 2018 , 260, 166-171	5.3	12
123	Heterogeneous Ru(III) oxidation catalysts via Elicklbidentate ligands on a periodic mesoporous organosilica support. <i>Green Chemistry</i> , 2016 , 18, 6035-6045	10	12
122	Novel hexaazatrinaphthalene-based covalent triazine frameworks as high-performance platforms for efficient carbon capture and storage. <i>Microporous and Mesoporous Materials</i> , 2019 , 290, 109650	5.3	12
121	Catalysis in MOFs: general discussion. <i>Faraday Discussions</i> , 2017 , 201, 369-394	3.6	12
120	Aluminum Incorporation into MCM-48 toward the Creation of Bristed Acidity. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 13905-13912	3.4	12
119	Reaction of NH3 with trichlorosilylated silica gel: a study of the reaction mechanism as a function of temperature. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1993 , 89, 2509		12
118	Straightforward preparation of fluorinated covalent triazine frameworks with significantly enhanced carbon dioxide and hydrogen adsorption capacities. <i>Dalton Transactions</i> , 2019 , 48, 17612-176	1493	12
117	Combinatorial effects of coral addition and plasma treatment on the properties of chitosan/polyethylene oxide nanofibers intended for bone tissue engineering. <i>Carbohydrate Polymers</i> , 2021 , 253, 117211	10.3	12
116	Ca:Mg:Zn:CO and Ca:Mg:CO-tri- and bi-elemental carbonate microparticles for novel injectable self-gelling hydrogel-microparticle composites for tissue regeneration. <i>Biomedical Materials</i> (<i>Bristol</i>), 2017 , 12, 025015	3.5	11
115	Luminescent thermometer based on Eu /Tb -organic-functionalized mesoporous silica. <i>Luminescence</i> , 2018 , 33, 567-573	2.5	11
114	First FT-Raman and 1H NMR comparative investigations in ring opening metathesis polymerization. <i>Vibrational Spectroscopy</i> , 2009 , 51, 147-151	2.1	11
113	A Counterion-Catalyzed (S0H+)(X-I+) Pathway toward Heat- and Steam-Stable Mesostructured Silica Assembled from Amines in Acidic Conditions. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 3690-3696	3.4	11

112	Synthesis, characterization and catalytic performance of Mo based metal- organic frameworks in the epoxidation of propylene by cumene hydroperoxide. <i>Chinese Chemical Letters</i> , 2017 , 28, 1057-1061	8.1	10
111	Synthesis of L-serine modified benzene bridged periodic mesoporous organosilica and its catalytic performance towards aldol condensations. <i>Microporous and Mesoporous Materials</i> , 2017 , 251, 1-8	5.3	10
110	A series of sulfonic acid functionalized mixed-linker DUT-4 analogues: synthesis, gas sorption properties and catalytic performance. <i>Dalton Transactions</i> , 2017 , 46, 14356-14364	4.3	10
109	Ce(III)-Based Frameworks: From 1D Chain to 3D Porous Metal © rganic Framework. <i>Crystal Growth and Design</i> , 2019 , 19, 7096-7105	3.5	10
108	Tailoring Bifunctional Periodic Mesoporous Organosilicas for Cooperative Catalysis. <i>ACS Applied Nano Materials</i> , 2020 , 3, 2373-2382	5.6	10
107	Dioxygen activation in photooxidation of diphenylmethane by a dioxomolybdenum(VI) complex anchored covalently onto mesoporous titania. <i>Transition Metal Chemistry</i> , 2013 , 38, 119-127	2.1	10
106	Effect of the C-bridge length on the ultraviolet-resistance of oxycarbosilane low-k films. <i>Applied Physics Letters</i> , 2016 , 108, 012902	3.4	10
105	Porous organic polymers as metal free heterogeneous organocatalysts. <i>Green Chemistry</i> ,	10	10
104	Discovery of a novel, large pore phase in a bimetallic Al/V metalorganic framework. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 24580-24584	13	9
103	Fabrication of Microporous Coatings on Titanium Implants with Improved Mechanical, Antibacterial, and Cell-Interactive Properties. <i>ACS Applied Materials & Eamp; Interfaces</i> , 2020 , 12, 30155-30169	9.5	9
102	Microwave-assisted synthesis of mesoporous titania with increased crystallinity, specific surface area, and photocatalytic activity. <i>Journal of Materials Science</i> , 2016 , 51, 9822-9829	4.3	9
101	Vulcanized Ethene-PMO: A New Strategy to Create Ultrastable Support Materials and Adsorbents. Journal of Physical Chemistry C, 2014 , 118, 17862-17869	3.8	9
100	Tuning component enrichment in amino acid functionalized (organo)silicas. <i>Catalysis Communications</i> , 2017 , 88, 85-89	3.2	9
99	Mechanistic Investigation on Oxygen Transfer with the Manganese-Salen Complex. <i>ChemCatChem</i> , 2015 , 7, 2711-2719	5.2	9
98	Design and applications of a home-built in situ FT-Raman spectroscopic cell. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2004 , 60, 2969-75	4.4	9
97	Gas-phase chlorosilylation of silica gel: effectiveness, surface coverage and stoichiometry. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1995 , 91, 353		9
96	Microalgae: a sustainable adsorbent with high potential for upconcentration of indium(III) from liquid process and waste streams. <i>Green Chemistry</i> , 2020 , 22, 1985-1995	10	8
95	Covalent triazine framework/carbon nanotube hybrids enabling selective reduction of CO2 to CO at low overpotential. <i>Green Chemistry</i> , 2020 , 22, 3095-3103	10	8

(2021-2010)

94	A new sulphonic acid functionalized periodic mesoporous organosilica as a suitable catalyst. <i>Studies in Surface Science and Catalysis</i> , 2010 , 365-368	1.8	8
93	Characterization and quantification of the NH3 modification of a BCl3-treated silica gel surface. Journal of the Chemical Society, Faraday Transactions, 1996 , 92, 679		8
92	Special data handling techniques for Fourier-transform infrared photo-acoustic spectra. Estimation and characterization of the N contents on ammoniated trichlorosilylated silica gel, using partial least-squares regression and curve fitting on the Sill stretching vibration. <i>Journal of the Chemical</i>		8
91	Society, Faraday Transactions, 1993, 89, 63-68 Hybrid Nanocomposites Formed by Lanthanide Nanoparticles in Zr-MOF for Local Temperature Measurements during Catalytic Reactions. <i>Chemistry of Materials</i> , 2021, 33, 8007-8017	9.6	8
90	Regeneration of Hopcalite used for the adsorption plasma catalytic removal of toluene by non-thermal plasma. <i>Journal of Hazardous Materials</i> , 2021 , 402, 123877	12.8	8
89	Structural and catalytic properties of Au/MgO-type catalysts prepared in aqueous or methanol phase: application in the CO oxidation reaction. <i>Journal of Materials Science</i> , 2017 , 52, 4727-4741	4.3	7
88	One-pot preparation of Ni-Cu nanoparticles supported on FAl2O3 as selective and stable catalyst for the Guerbet reaction of 1-octanol. <i>Catalysis Communications</i> , 2017 , 98, 94-97	3.2	7
87	Gold/titania composites: An X-ray absorption spectroscopy study on the influence of the reduction method. <i>Spectrochimica Acta, Part B: Atomic Spectroscopy</i> , 2015 , 110, 45-50	3.1	7
86	The enantioselectivity of the manganese-salen complex in the epoxidation of unfunctionalized olefins and the influence of grafting. <i>Journal of Molecular Catalysis A</i> , 2015 , 406, 106-113		7
85	Elucidating the promotional effect of a covalent triazine framework in aerobic oxidation. <i>Applied Catalysis B: Environmental</i> , 2020 , 269, 118769	21.8	7
84	Pyrrole PMOs, incorporating new N-heterocyclic compounds on an ethene-PMO through Diels Alder reactions. <i>Materials Chemistry and Physics</i> , 2014 , 148, 403-410	4.4	7
83	Sealed ultra low-k organosilica films with improved electrical, mechanical and chemical properties. Journal of Materials Chemistry C, 2013 , 1, 3961	7.1	7
82	Metal- and covalent organic frameworks as catalyst for organic transformation: Comparative overview and future perspectives. <i>Coordination Chemistry Reviews</i> , 2022 , 451, 214259	23.2	7
81	Aminated poly(ethylene glycol) methacrylate resins as stable heterogeneous catalysts for the aldol reaction in water. <i>Journal of Catalysis</i> , 2020 , 381, 540-546	7-3	7
80	Vibrational fingerprint of the absorption properties of UiO-type MOF materials. <i>Theoretical Chemistry Accounts</i> , 2016 , 135, 1	1.9	7
79	Post-synthesis bromination of benzene bridged PMO as a way to create a high potential hybrid material. <i>Microporous and Mesoporous Materials</i> , 2016 , 236, 244-249	5.3	7
78	Rational design of nucleophilic amine sites via computational probing of steric and electronic effects. <i>Catalysis Today</i> , 2019 , 334, 96-103	5.3	7
77	Luminescent Ratiometric Thermometers Based on a 4f-3d Grafted Covalent Organic Framework to Locally Measure Temperature Gradients During Catalytic Reactions. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 3727-3736	16.4	7

76	Luminescent Ratiometric Thermometers Based on a 4fBd Grafted Covalent Organic Framework to Locally Measure Temperature Gradients During Catalytic Reactions. <i>Angewandte Chemie</i> , 2021 , 133, 3771-3780	3.6	7
75	PMO-Immobilized Au -NHC Complexes: Heterogeneous Catalysts for Sustainable Processes. <i>ChemPhysChem</i> , 2018 , 19, 430-436	3.2	7
74	A Heterogeneous Hydrogen-Evolution Catalyst Based on a Mesoporous Organosilica with a Diiron Catalytic Center Modelling [FeFe]-Hydrogenase. <i>ChemCatChem</i> , 2018 , 10, 4894-4899	5.2	7
73	Continuous-feed nanocasting process for the synthesis of bismuth nanowire composites. <i>Chemical Communications</i> , 2017 , 53, 12294-12297	5.8	6
72	Kinetic evaluation of chitosan-derived catalysts for the aldol reaction in water. <i>Reaction Chemistry and Engineering</i> , 2019 , 4, 1948-1956	4.9	6
71	Luminescent Graphene-Based Materials via Europium Complexation on Dipyridylpyridazine-Functionalized Graphene Sheets. <i>Chemistry - A European Journal</i> , 2019 , 25, 6823-68	33 0 .8	6
70	Fine-tuning the theoretically predicted structure of MIL-47(V) with the aid of powder X-ray diffraction. <i>CrystEngComm</i> , 2015 , 17, 8612-8622	3.3	6
69	Wet-Chemical Synthesis of Enhanced-Thermopower Bi1\(\text{\text{B}Sbx}\) Nanowire Composites for Solid-State Active Cooling of Electronics. <i>Physical Review Applied</i> , 2018 , 9,	4.3	6
68	Template-dependent hydrophobicity in mesoporous organosilica films. <i>Microporous and Mesoporous Materials</i> , 2018 , 259, 111-115	5.3	6
67	UV cure of oxycarbosilane low-k films. <i>Microelectronic Engineering</i> , 2016 , 156, 103-107	2.5	6
66	New directions in gas sorption and separation with MOFs: general discussion. <i>Faraday Discussions</i> , 2017 , 201, 175-194	3.6	6
65	On the mechanical and electrical properties of self-assembly-based organosilicate porous films. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 8599-8607	7.1	6
64	Calcium phosphate cements modified with pore expanded SBA-15 materials. <i>Journal of Materials Chemistry</i> , 2012 , 22, 14502		6
63	A coordinative saturated vanadium containing metal organic framework that shows a remarkable catalytic activity. <i>Studies in Surface Science and Catalysis</i> , 2010 , 175, 329-332	1.8	6
62	Amidoxime-functionalized covalent organic framework as simultaneous luminescent sensor and adsorbent for organic arsenic from water. <i>Chemical Engineering Journal</i> , 2022 , 429, 132162	14.7	6
61	Flexible luminescent non-lanthanide metal-organic frameworks as small molecules sensors. <i>Dalton Transactions</i> , 2021 , 50, 14513-14531	4.3	6
60	Application toward Confocal Full-Field Microscopic X-ray Absorption Near Edge Structure Spectroscopy. <i>Analytical Chemistry</i> , 2017 , 89, 2123-2130	7.8	5
59	Optical Properties of Isolated and Covalent Organic Framework-Embedded Ruthenium Complexes. <i>Journal of Physical Chemistry A</i> , 2019 , 123, 6854-6867	2.8	5

(2004-2019)

58	Sustainable iron-based oxygen carriers for hydrogen production [Real-time operando investigation. <i>International Journal of Greenhouse Gas Control</i> , 2019 , 88, 393-402	4.2	5
57	Electronic, magnetic and photophysical properties of MOFs and COFs: general discussion. <i>Faraday Discussions</i> , 2017 , 201, 87-99	3.6	5
56	In Situ Study of ALD Processes Using Synchrotron-based X-ray Fluorescence and Scattering Techniques. <i>ECS Transactions</i> , 2013 , 50, 35-42	1	5
55	The creation of MOx surface species on pure silica MCM-48 using gas- and liquid-phase modifications with M-acetylacetonate complexes. <i>Studies in Surface Science and Catalysis</i> , 1998 , 333-34	1 ^{1.8}	5
54	Metal-organic and covalent organic frameworks for the remediation of aqueous dye solutions: Adsorptive, catalytic and extractive processes. <i>Coordination Chemistry Reviews</i> , 2022 , 454, 214332	23.2	5
53	Overview of N-Rich Antennae Investigated in Lanthanide-Based Temperature Sensing. <i>Chemistry - A European Journal</i> , 2021 , 27, 7214-7230	4.8	5
52	A Visible-Light-Harvesting Covalent Organic Framework Bearing Single Nickel Sites as a Highly Efficient Sulfur©arbon Cross-Coupling Dual Catalyst. <i>Angewandte Chemie</i> , 2021 , 133, 10915-10922	3.6	5
51	Oxygen-rich poly-bisvanillonitrile embedded amorphous zirconium oxide nanoparticles as reusable and porous adsorbent for removal of arsenic species from water. <i>Journal of Hazardous Materials</i> , 2021 , 413, 125356	12.8	5
50	Conquering the crystallinity conundrum: efforts to increase quality of covalent organic frameworks. <i>Materials Advances</i> , 2021 , 2, 2811-2845	3.3	5
49	Electronic properties of heterogenized Ru(II) polypyridyl photoredox complexes on covalent triazine frameworks. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 8433-8442	13	4
48	Thiol-Functionalized Ethylene Periodic Mesoporous Organosilica as an Efficient Scavenger for Palladium: Confirming the Homogeneous Character of the Suzuki Reaction. <i>Materials</i> , 2020 , 13,	3.5	4
47	Redetermination of [Pr(NOITHD)]III HD. Acta Crystallographica Section E: Structure Reports Online, 2012 , 68, i59-i60		4
46	Kinetic study of the chemisorption of diborane on silica gel: application of the Elovich equation. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1992 , 88, 65		4
45	Bifunctional Noble-Metal-Free Catalyst for the Selective Aerobic Oxidation-Knoevenagel One-Pot Reaction: Encapsulation of Polyoxometalates into an Alkylamine-Modified MIL-101 Framework. <i>ACS Applied Materials & Diterfaces</i> , 2021 , 13, 23558-23566	9.5	4
44	Creation of Exclusive Artificial Cluster Defects by Selective Metal Removal in the (Zn, Zr) Mixed-Metal UiO-66. <i>Journal of the American Chemical Society</i> , 2021 ,	16.4	4
43	EPR characterization of vanadium dopant sites in DUT-5(Al). Optical Materials, 2019, 94, 217-223	3.3	3
42	The Uses of Polynuclear Metal Complexes to Develop Designed Dispersions of Supported Metal Oxides: Part II. Catalytic Properties. <i>Journal of Materials Science</i> , 1997 , 5, 199-206		3
41	Assesment of LV diastolic filling using color M-mode Doppler echocardiography: validation in new hydoraulic model. <i>Biomechanics and Modeling in Mechanobiology</i> , 2004 , 2, 127-38	3.8	3

40	The use of alkylchlorosilanes as coupling agents for the synthesis of stable, hydrophobic, surfactant extracted MCM-48/VOx catalysts <i>Studies in Surface Science and Catalysis</i> , 2000 , 129, 317-326	1.8	3
39	An Overview of the Challenges and Progress of Synthesis, Characterization and Applications of Plugged SBA-15 Materials for Heterogeneous Catalysis. <i>Materials</i> , 2021 , 14,	3.5	3
38	Rational design of lanthanide nano periodic mesoporous organosilicas (Ln-nano-PMOs) for near-infrared emission. <i>Dalton Transactions</i> , 2021 , 50, 2774-2781	4.3	3
37	N-Rich Porous Polymer with Isolated Tb -Ions Displays Unique Temperature Dependent Behavior through the Absence of Thermal Quenching. <i>Chemistry - A European Journal</i> , 2020 , 26, 15596-15604	4.8	2
36	Encapsulated Metallic Nanoparticles in Metal©rganic Frameworks: Toward Their Use in Catalysis 2018 , 399-445		2
35	Tuning the Properties of Periodic Mesoporous Organosilica Films for Low-k Application by Gemini Surfactants. <i>ChemPhysChem</i> , 2018 , 19, 2295-2298	3.2	2
34	Pore Narrowing of Mesoporous Silica Materials. <i>Materials</i> , 2013 , 6, 570-579	3.5	2
33	A Novel Malonamide Periodic Mesoporous Organosilica (PMO) for Tuneable Ibuprofen Release. <i>Advanced Porous Materials</i> , 2015 , 2, 157-164		2
32	RutheniumIndenylidene Complexes Bearing Saturated N-Heterocyclic Carbenes: Synthesis and Application in Ring-Closing Metathesis Reactions. <i>NATO Science for Peace and Security Series A: Chemistry and Biology</i> , 2010 , 31-38	0.1	2
31	Chapter 5:Metal©rganic-framework Nanoparticles: Synthesis, Characterization and Catalytic Applications. <i>RSC Catalysis Series</i> , 2019 , 132-162	0.3	2
30	Combined experimental and computational studies on preferential CO2 adsorption over a zinc-based porous framework solid. <i>New Journal of Chemistry</i> , 2020 , 44, 1806-1816	3.6	2
29	Abatement of Toluene Using a Sequential Adsorption-Catalytic Oxidation Process: Comparative Study of Potential Adsorbent/Catalytic Materials. <i>Catalysts</i> , 2020 , 10, 761	4	2
28	Quantifying the Likelihood of Structural Models through a Dynamically Enhanced Powder X-Ray Diffraction Protocol. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 8913-8922	16.4	2
27	Rigid Nanoporous Urea-Based Covalent Triazine Frameworks for C2/C1 and CO/CH Gas Separation. <i>Molecules</i> , 2021 , 26,	4.8	2
26	A comprehensive model for the role of water and silanols in the amine catalyzed aldol reaction. <i>Chemical Engineering Journal</i> , 2021 , 404, 127070	14.7	2
25	A lanthanide-functionalized covalent triazine framework as a physiological molecular thermometer. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 6436-6444	7.1	2
24	Emergence of Metallic Conductivity in Ordered One-Dimensional Coordination Polymer Thin Films upon Reductive Doping. <i>ACS Applied Materials & Empty Interfaces</i> , 2021 , 13, 10249-10256	9.5	2
23	A D efectivelConjugated Porous Poly-Azo as Dual Photocatalyst. <i>Catalysts</i> , 2021 , 11, 1064	4	2

22	Hydrogenative Ring-Rearrangement of Furfural to Cyclopentanone over Pd/UiO-66-NO with Tunable Missing-Linker Defects. <i>Molecules</i> , 2021 , 26,	4.8	2
21	Novel water-dispersible lanthanide-grafted covalent organic framework nanoplates for luminescent levofloxacin sensing and visual pH detection. <i>Dyes and Pigments</i> , 2021 , 196, 109818	4.6	2
20	Red edge effect and chromoselective photocatalysis with amorphous covalent triazine-based frameworks <i>Nature Communications</i> , 2022 , 13, 2171	17.4	2
19	Metal-Organic Frameworks in the Field of Liquid Adsorption 2016 , 347-356		1
18	The Influence of Pre-Electrospinning Plasma Treatment on Physicochemical Characteristics of PLA Nanofibers. <i>Macromolecular Materials and Engineering</i> , 2019 , 304, 1900391	3.9	1
17	Periodic Mesoporous Organosilica Films with a Tunable Steady-State Mesophase. <i>ChemPhysChem</i> , 2017 , 18, 2846-2849	3.2	1
16	Tetra-ethyl-ammonium tetra-kis-(1,1,1,5,5,5-hexa-fluoro-acetyl-acetonato)terbate(III). <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2012 , 68, m111-2		1
15	Construction of Tetrathiafulvalene-based Covalent Organic Frameworks for Superior Iodine Capture. <i>Chemical Research in Chinese Universities</i> ,1	2.2	1
14	Model-based control of iron- and copper oxide particle distributions in porous EAl2O3 microspheres through careful tuning of the interactions during impregnation. <i>Materials Chemistry and Physics</i> , 2022 , 276, 125428	4.4	1
13	Structural and Photophysical Properties of Various Polypyridyl Ligands: A Combined Experimental and Computational Study. <i>ChemPhysChem</i> , 2020 , 21, 2489-2505	3.2	1
12	Salen-decorated Periodic Mesoporous Organosilica: From Metal-assisted Epoxidation to Metal-free CO Insertion. <i>Chemistry - an Asian Journal</i> , 2021 , 16, 2126-2135	4.5	1
11	Photo-epoxidation of (肿pinene with molecular O2 catalyzed by a dioxo-molybdenum (VI)-based Metalのrganic Framework. <i>Research on Chemical Intermediates</i> , 2021 , 47, 4227-4244	2.8	1
10	Upconverting Er-Yb Inorganic/Covalent Organic Framework Core-Shell Nanoplatforms for Simultaneous Catalysis and Nanothermometry. <i>ACS Applied Materials & Discounty of the Property of the Pro</i>	0-475018	8 ¹
9	New N-Heterocyclic Carbene Ligands in Grubbs and Hoveydallrubbs Catalysts. <i>NATO Science for Peace and Security Series A: Chemistry and Biology</i> , 2010 , 17-29	0.1	O
8	Chemical sensors based on a Eu(iii)-centered periodic mesoporous organosilica hybrid material using picolinic acid as an efficient secondary ligand. <i>Dalton Transactions</i> , 2021 , 50, 11061-11070	4.3	0
7	Structural and Photophysical Properties of Various Polypyridyl Ligands: A Combined Experimental and Computational Study. <i>ChemPhysChem</i> , 2020 , 21, 2488-2488	3.2	
6	REktitelbild: Developing Luminescent Ratiometric Thermometers Based on a Covalent Organic Framework (COF) (Angew. Chem. 5/2020). <i>Angewandte Chemie</i> , 2020 , 132, 2144-2144	3.6	
5	Olefin Metathesis Mediated By: - Schiff Base Ru-Alkylidenes -Ru-Alkylidenes Bearing Unsymmetrical NH Ligands. <i>NATO Science Series Series II, Mathematics, Physics and Chemistry</i> , 2007 , 251-263		

4	Effect of Building Block Transformation in Covalent Triazine-Based Frameworks for Enhanced CO Uptake and Metal-Free Heterogeneous Catalysis. <i>Chemistry - A European Journal</i> , 2020 , 26, 1441	4.8
3	Quantifying the Likelihood of Structural Models through a Dynamically Enhanced Powder X-Ray Diffraction Protocol. <i>Angewandte Chemie</i> , 2021 , 133, 8995-9004	3.6
2	Identification of vanadium dopant sites in the metal-organic framework DUT-5(Al). <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 7088-7100	3.6
1	Selective copper recovery from ammoniacal waste streams using a systematic biosorption process. <i>Chemosphere</i> , 2022 , 286, 131935	8.4