
Shuxiang Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2992729/publications.pdf Version: 2024-02-01

СНИХИМСТИ

#	Article	IF	CITATIONS
1	Combined Extraction–Oxidation System for Oxidative Desulfurization (ODS) of a Model Fuel. Energy & Fuels, 2015, 29, 618-625.	2.5	88
2	Homogeneously dispersed HPW/graphene for high efficient catalytic oxidative desulfurization prepared by electrochemical deposition Applied Surface Science, 2019, 484, 917-924.	3.1	43
3	A Ti-based bi-MOF for the tandem reaction of H ₂ O ₂ generation and catalytic oxidative desulfurization. Catalysis Science and Technology, 2020, 10, 1015-1022.	2.1	40
4	Oxidative desulfurization in diesel <i>via</i> a titanium dioxide triggered thermocatalytic mechanism. Catalysis Science and Technology, 2019, 9, 2923-2930.	2.1	38
5	Gasâ^Liquidâ^Liquid Three-Phase Reactive Extraction for the Hydrogen Peroxide Preparation by Anthraquinone Process. Industrial & Engineering Chemistry Research, 2008, 47, 7414-7418.	1.8	34
6	Fabrication of various morphological forms of a g-C ₃ N ₄ -supported MoO ₃ catalyst for the oxidative desulfurization of dibenzothiophene. New Journal of Chemistry, 2020, 44, 18745-18755.	1.4	24
7	Ligand Modified Metal Organic Framework UiO-66: A Highly Efficient and Stable Catalyst for Oxidative Desulfurization. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 756-762.	1.9	23
8	Water-dispersible Fe ₃ O ₄ nanowires as efficient supports for noble-metal catalysed aqueous reactions. Journal of Materials Chemistry A, 2014, 2, 4779-4787.	5.2	22
9	Deep oxidative desulfurization catalyzed by (NH ₄) _x H _{4â~'x} PMo ₁₁ VO ₄₀ (x = 1, 2, 3, 4) using O ₂ as an oxidant. RSC Advances, 2017, 7, 48454-48460.	1.7	20
10	Molybdenum anchored on NH ₂ â€modified spherical SiO ₂ : A highly efficient and stable catalyst for oxidative desulfurization of fuel oil. Applied Organometallic Chemistry, 2018, 32, e4521.	1.7	19
11	Kinetic Modeling of the Extraction–Oxidation Coupling Process for the Removal of Dibenzothiophene. Energy & Fuels, 2016, 30, 7214-7220.	2.5	18
12	Continuous Treatment of Phenol over an Fe2O3/γ-Al2O3 Catalyst in a Fixed-Bed Reactor. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	15
13	Oneâ€Pot Preparation of Ni ₂ P/γâ€Al ₂ O ₃ Catalyst for Dehydrogenation of Propane to Propylene. ChemistrySelect, 2018, 3, 10532-10536.	0.7	15
14	An efficient and recyclable polyoxometalate-based hybrid catalyst for heterogeneous deep oxidative desulfurization of dibenzothiophene derivatives with oxygen. RSC Advances, 2016, 6, 79520-79525.	1.7	14
15	Ultralow-temperature synthesis of small Ag-doped carbon nitride for nitrogen photofixation. Catalysis Science and Technology, 2020, 10, 7652-7660.	2.1	14
16	Remarkable lignin degradation in paper wastewaters over Fe ₂ O ₃ /l³-Al ₂ O ₃ catalysts using the catalytic wet peroxide oxidation method. RSC Advances, 2017, 7, 37487-37494.	1.7	12
17	Two-step hydrothermal synthesis of \hat{l}^2 -MCM-41 composite molecular sieves as supports of bifunctional catalysts for hydroisomerization of n-heptane. Journal of Porous Materials, 2016, 23, 1489-1493.	1.3	11
18	Preparation of Mesoporous MnO2 Catalysts with Different Morphologies for Catalytic Ozonation of Organic Compounds. Catalysis Letters, 2022, 152, 1441-1450.	1.4	11

SHUXIANG LU

#	Article	IF	CITATIONS
19	Synergistic immobilization of chromium in tannery sludge by ZnO and TiO2 and the oxidation mechanism of Cr(III) under alkaline in high temperature. Journal of Hazardous Materials, 2022, 424, 127290.	6.5	11
20	One-pot preparation of mesoporous K _x PMo ₁₂ O ₄₀ (<i>x</i> = 1, 2,) Tj E	-1 0	0
	their activity. Reaction Chemistry and Engineering, 2020, 5, 1776-1782.		9
21	Catalytic performance of supported Eu/phosphomolybdic acid modified mesoporous silica in the oxidative desulfurization of dibenzothiophene. Reaction Kinetics, Mechanisms and Catalysis, 2016, 118, 621-632.	0.8	6
22	Oxidative desulfurization of 4,6-dimethyldibenzothiophene over short titanate nanotubes: a non-classical shape selective catalysis. Journal of Porous Materials, 2020, 27, 331-338.	1.3	6
23	An S-scheme α-Fe ₂ O ₃ /Cu ₂ O photocatalyst for an enhanced primary amine oxidative coupling reaction under visible light. Dalton Transactions, 2022, 51, 10578-10586.	1.6	5
24	Hierarchical macro-mesoporous Mo/Al2O3 catalysts prepared by dual-template method for oxidative desulfurization. Journal of Porous Materials, 2021, 28, 1895.	1.3	3
25	Reactive extraction for preparation of hydrogen peroxide under pressure. Frontiers of Chemical Engineering in China, 2008, 2, 335-340.	0.6	2
26	Cu doped MnO2/γ-Al2O3: a facile and efficient catalyst for the degradation of Na2S in waste water under ambient conditions. Reaction Kinetics, Mechanisms and Catalysis, 2020, 129, 1047-1059.	0.8	1
27	GAS-AGITATED EXTRACTION PROCESS FOR PREPARING OF HYDROGEN PEROXIDE. , 2004, , .		0
28	Catalytic decomposition of dibenzothiophene sulfone over K-based oxides supported on alumina. New Journal of Chemistry, 2022, 46, 3409-3416.	1.4	0