Fang-Bao Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2992527/publications.pdf

Version: 2024-02-01

107	2,857 citations	29	50
papers		h-index	g-index
108	108	108	1451 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Fluid–structure interaction involving large deformations: 3D simulations and applications to biological systems. Journal of Computational Physics, 2014, 258, 451-469.	3.8	299
2	An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments. Journal of Computational Physics, 2011, 230, 7266-7283.	3.8	226
3	Force production and asymmetric deformation of a flexible flapping wing in forward flight. Journal of Fluids and Structures, 2013, 36, 149-161.	3.4	107
4	Recent trends and progress in the immersed boundary method. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233, 7617-7636.	2.1	107
5	An immersed boundary method for fluid–structure interaction with compressible multiphase flows. Journal of Computational Physics, 2017, 346, 131-151.	3.8	76
6	Coupling modes of three filaments in side-by-side arrangement. Physics of Fluids, 2011, 23, .	4.0	74
7	On numerical modeling of animal swimming and flight. Computational Mechanics, 2013, 52, 1221-1242.	4.0	72
8	A novel geometry-adaptive Cartesian grid based immersed boundary–lattice Boltzmann method for fluid–structure interactions at moderate and high Reynolds numbers. Journal of Computational Physics, 2018, 375, 22-56.	3.8	69
9	Review on bio-inspired flight systems and bionic aerodynamics. Chinese Journal of Aeronautics, 2021, 34, 170-186.	5.3	67
10	Secondary vortex street in the wake of two tandem circular cylinders at low Reynolds number. Physical Review E, 2010, 81, 036305.	2.1	66
11	An immersed boundary-lattice Boltzmann method for fluid-structure interaction problems involving viscoelastic fluids and complex geometries. Journal of Computational Physics, 2020, 415, 109487.	3.8	65
12	Effects of wing shape, aspect ratio and deviation angle on aerodynamic performance of flapping wings in hover. Physics of Fluids, 2016, 28, .	4.0	64
13	Interaction between a flexible filament and a downstream rigid body. Physical Review E, 2010, 82, 026301.	2.1	62
14	Improving power-extraction efficiency of a flapping plate: From passive deformation to active control. Journal of Fluids and Structures, 2014, 51, 384-392.	3.4	61
15	Simulation of a pulsatile non-Newtonian flow past a stenosed 2D artery with atherosclerosis. Computers in Biology and Medicine, 2013, 43, 1098-1113.	7.0	58
16	Numerical study on the power extraction performance of a flapping foil with a flexible tail. Physics of Fluids, $2015, 27, .$	4.0	54
17	Effects of hawkmoth-like flexibility on the aerodynamic performance of flapping wings with different shapes and aspect ratios. Physics of Fluids, 2018, 30, .	4.0	52
18	Effects of flexibility on the hovering performance of flapping wings with different shapes and aspect ratios. Journal of Fluids and Structures, 2018, 81, 69-96.	3.4	48

#	Article	IF	CITATIONS
19	Effects of pitching motion profile on energy harvesting performance of a semi-active flapping foil using immersed boundary method. Ocean Engineering, 2018, 163, 94-106.	4.3	45
20	AN EFFICIENT RED BLOOD CELL MODEL IN THE FRAME OF IB-LBM AND ITS APPLICATION. International Journal of Biomathematics, 2013, 06, 1250061.	2.9	43
21	How a flexible tail improves the power extraction efficiency of a semi-activated flapping foil system: A numerical study. Journal of Fluids and Structures, 2015, 54, 886-899.	3.4	40
22	FSI modeling with the DSD/SST method for the fluid and finite difference method for the structure. Computational Mechanics, 2014, 54, 581-589.	4.0	39
23	Flapping foil power generator performance enhanced with a spring-connected tail. Physics of Fluids, 2017, 29, .	4.0	39
24	An FSI solution technique based on the DSD/SST method and its applications. Mathematical Models and Methods in Applied Sciences, 2015, 25, 2257-2285.	3.3	37
25	Role of mass on the stability of flag/flags in uniform flow. Applied Physics Letters, 2013, 103, .	3.3	34
26	An improved lattice Boltzmann method for solid-liquid phase change in porous media under local thermal non-equilibrium conditions. International Journal of Heat and Mass Transfer, 2017, 110, 58-62.	4.8	32
27	Propulsive performance of a body with a traveling-wave surface. Physical Review E, 2012, 86, 016304.	2.1	31
28	A hybrid immersed boundary-lattice Boltzmann/finite difference method for coupled dynamics of fluid flow, advection, diffusion and adsorption in fractured and porous media. Computers and Geosciences, 2019, 128, 70-78.	4.2	31
29	An immersed boundary method for fluid–structure–acoustics interactions involving large deformations and complex geometries. Journal of Fluids and Structures, 2020, 95, 102993.	3.4	30
30	Onset of instability of a flag in uniform flow. Theoretical and Applied Mechanics Letters, 2012, 2, 022005.	2.8	28
31	IB–LBM simulation of the haemocyte dynamics in a stenotic capillary. Computer Methods in Biomechanics and Biomedical Engineering, 2014, 17, 978-985.	1.6	28
32	Refuging rainbow trout selectively exploit flows behind tandem cylinders. Journal of Experimental Biology, 2016, 219, 2182-2191.	1.7	28
33	Swimming performance and vorticity structures of a mother–calf pair of fish. Computers and Fluids, 2016, 124, 1-11.	2.5	26
34	Numerical study of flexible flapping wings with an immersed boundary method: Fluid–structure–acoustics interaction. Journal of Fluids and Structures, 2019, 90, 396-409.	3.4	26
35	Red blood cell partitioning and blood flux redistribution in microvascular bifurcation. Theoretical and Applied Mechanics Letters, 2012, 2, 024001.	2.8	25
36	A numerical study of fish adaption behaviors in complex environments with a deep reinforcement learning and immersed boundary–lattice Boltzmann method. Scientific Reports, 2021, 11, 1691.	3.3	25

#	Article	IF	Citations
37	Deforming-Spatial-Domain/Stabilized Space–Time (DSD/SST) method in computation of non-Newtonian fluid flow and heat transfer with moving boundaries. Computational Mechanics, 2014, 53, 257-271.	4.0	24
38	Macroscopic modeling of pedestrian flow based on a second-order predictive dynamic model. Applied Mathematical Modelling, 2016, 40, 9806-9820.	4.2	24
39	A simple and efficient implicit direct forcing immersed boundary model for simulations of complex flow. Applied Mathematical Modelling, 2017, 43, 287-305.	4.2	24
40	Heat Transfer in Non-Newtonian Flows by a Hybrid Immersed Boundary–Lattice Boltzmann and Finite Difference Method. Applied Sciences (Switzerland), 2018, 8, 559.	2.5	24
41	Effects of surface roughness and derivation of scaling laws on gas transport in coal using a fractal-based lattice Boltzmann method. Fuel, 2020, 259, 116229.	6.4	24
42	Discrete Vortex Method with Flow Separation Corrections for Flapping-Foil Power Generators. AIAA Journal, 2017, 55, 410-418.	2.6	23
43	Numerical study on hydrodynamics for a non-sinusoidal forced oscillating hydrofoil based on an immersed boundary method. Ocean Engineering, 2018, 147, 606-620.	4.3	22
44	Deformation of a Capsule in a Power-Law Shear Flow. Computational and Mathematical Methods in Medicine, 2016, 2016, 1-9.	1.3	21
45	Transition to chaos in a two-sided collapsible channel flow. Journal of Fluid Mechanics, 2021, 926, .	3.4	21
46	Energy harvesting of two inverted piezoelectric flags in tandem, side-by-side and staggered arrangements. International Journal of Heat and Fluid Flow, 2020, 83, 108589.	2.4	20
47	Dynamic characteristics of a deformable capsule in a simple shear flow. Physical Review E, 2019, 99, 023101.	2.1	19
48	Modeling the effects of gas slippage, cleat network topology and scale dependence of gas transport in coal seam gas reservoirs. Fuel, 2020, 264, 116715.	6.4	18
49	Numerical study of sound generation by three-dimensional flexible flapping wings during hovering flight. Journal of Fluids and Structures, 2020, 99, 103165.	3.4	18
50	A numerical study of linear and nonlinear kinematic models in fish swimming with the DSD/SST method. Computational Mechanics, 2015, 55, 469-477.	4.0	17
51	External force-induced focus pattern of a flexible filament in a viscous fluid. Applied Mathematical Modelling, 2018, 53, 369-383.	4.2	16
52	Kinematic optimization of a flapping foil power generator using a multi-fidelity evolutionary algorithm. Renewable Energy, 2019, 132, 543-557.	8.9	16
53	Analysis of unsteady flow effects on the Betz limit for flapping foil power generation. Journal of Fluid Mechanics, 2020, 902, .	3.4	16
54	Numerical simulation of flow over a parallel cantilevered flag in the vicinity of a rigid wall. Physical Review E, 2019, 99, 053111.	2.1	15

#	Article	IF	Citations
55	Influences of serrated trailing edge on the aerodynamic and aeroacoustic performance of a flapping wing during hovering flight. Physics of Fluids, 2022, 34, .	4.0	15
56	Effect of the Mobility Parameter on the Oscillatory Electroconvection of Dielectric Liquids Subject to Strong Unipolar Charge Injection. IEEE Transactions on Industry Applications, 2014, 50, 2306-2313.	4.9	14
57	A higher-order macroscopic model for bi-direction pedestrian flow. Physica A: Statistical Mechanics and Its Applications, 2015, 425, 69-78.	2.6	14
58	Aerodynamic characteristics of hoverflies during hovering flight. Computers and Fluids, 2019, 183, 75-83.	2.5	14
59	Hydrodynamic effects of mucus on swimming performance of an undulatory foil by using the DSD/SST method. Computational Mechanics, 2020, 65, 751-761.	4.0	14
60	STUDY ON A SELF-PROPELLED FISH SWIMMING IN VISCOUS FLUID BY A FINITE ELEMENT METHOD. Journal of Mechanics in Medicine and Biology, 2013, 13, 1340012.	0.7	13
61	The Role of Finite Displacements in Vocal Fold Modeling. Journal of Biomechanical Engineering, 2013, 135, 111008.	1.3	13
62	A Full-Newton Step Infeasible Interior-Point Algorithm for Linear Programming Based on a Kernel Function. Applied Mathematics and Optimization, 2009, 60, 237-251.	1.6	12
63	Macroscopic pedestrian flow model with degrading spatial information. Journal of Computational Science, 2015, 10, 36-44.	2.9	12
64	An IB-LBM study of continuous cell sorting in deterministic lateral displacement arrays. Acta Mechanica Sinica/Lixue Xuebao, 2016, 32, 1023-1030.	3.4	12
65	Hydrodynamic study of sperm swimming near a wall based on the immersed boundary-lattice Boltzmann method. Engineering Applications of Computational Fluid Mechanics, 2020, 14, 853-870.	3.1	12
66	Numerical Investigation of Electrohydrodynamic Plumes for Locally Enhanced Cooling in Dielectric Liquids. IEEE Transactions on Industry Applications, 2015, 51, 669-678.	4.9	11
67	IB-LBM simulation on blood cell sorting with a micro-fence structure. Bio-Medical Materials and Engineering, 2014, 24, 475-481.	0.6	10
68	Benchmark numerical solutions for two-dimensional fluid–structure interaction involving large displacements with the deforming-spatial-domain/stabilized space–time and immersed boundary–lattice Boltzmann methods. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018, 232, 2500-2514.	2.1	10
69	Stable Schooling Formations Emerge from the Combined Effect of the Active Control and Passive Self-Organization. Fluids, 2022, 7, 41.	1.7	8
70	An efficient geometry-adaptive mesh refinement framework and its application in the immersed boundary lattice Boltzmann method. Computer Methods in Applied Mechanics and Engineering, 2022, 392, 114662.	6.6	8
71	IB-LBM study on cell sorting by pinched flow fractionation. Bio-Medical Materials and Engineering, 2014, 24, 2547-2554.	0.6	7
72	Numerical Modeling of Sperm Swimming. Fluids, 2021, 6, 73.	1.7	7

#	Article	IF	Citations
73	A Geometry-Adaptive Immersed Boundary–Lattice Boltzmann Method for Modelling Fluid–Structure Interaction Problems. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2019, , 161-171.	0.2	6
74	Numerical study of rigid and flexible wing shapes in hover. Journal of Physics: Conference Series, 2017, 822, 012007.	0.4	5
75	The lattice Boltzmann method and its applications in complex flows and fluid–structure interactions. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018, 232, 403-404.	2.1	5
76	A Computational Analysis of the Influence of a Pressure Wire in Evaluating Coronary Stenosis. Fluids, 2021, 6, 165.	1.7	5
77	Numerical study of three-dimensional flapping wings hovering in ultra-low-density atmosphere. Physics of Fluids, 2022, 34, .	4.0	5
78	Computational Fluid–Structure Interaction for Biological and Biomedical Flows. , 2013, , .		4
79	Dynamic Behaviours of a Filament in a Viscoelastic Uniform Flow. Fluids, 2021, 6, 90.	1.7	4
80	Effects of uniform vertical inflow perturbations on the performance of flapping wings. Royal Society Open Science, 2021, 8, 210471.	2.4	4
81	ANALYTICAL SOLUTIONS OF NON-FOURIER PENNES AND CHEN–HOLMES EQUATIONS. International Journal of Biomathematics, 2012, 05, 1250022.	2.9	3
82	Numerical study of the sound generated by two tandem arranged wings in forward flight. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235, 265-279.	2.1	3
83	Performance of passively pitching flapping wings in the presence of vertical inflows. Bioinspiration and Biomimetics, 2021, 16, 056003.	2.9	3
84	Lattice Boltzmann model for interface capturing of multiphase flows based on Allen–Cahn equation. Chinese Physics B, 2022, 31, 024701.	1.4	3
85	A Diffused Interface Immersed Boundary–Lattice Boltzmann Method for Simulation of Channel Flow. , 2020, , .		3
86	Hydrodynamic behaviors of self-propelled sperms in confined spaces. Engineering Applications of Computational Fluid Mechanics, 2022, 16, 141-160.	3.1	3
87	Point-to-Point Navigation of a Fish-Like Swimmer in a Vortical Flow With Deep Reinforcement Learning. Frontiers in Physics, 2022, 10, .	2.1	3
88	Bio-inspired flapping foils and their applications. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018, 232, 2493-2493.	2.1	2
89	Optimal Efficiency and Heaving Velocity in Flapping Foil Propulsion. AIAA Journal, 2021, 59, 2143-2154.	2.6	2
90	Sound generated by the flow around an airfoil with an attached flap: From passive fluid–structure interaction to active control. Journal of Fluids and Structures, 2022, 111, 103571.	3.4	2

#	Article	IF	CITATIONS
91	THE DEVELOPMENT AND STABILITY ANALYSIS OF A NONLINEAR GROWTH MODEL FOR MICROORGANISMS. International Journal of Biomathematics, 2010, 03, 417-438.	2.9	1
92	Three-dimensional numerical simulation of electro-convection due to strong unipolar charge injection in a cubic cavity. , 2013 , , .		1
93	A MATHEMATICAL MODEL FOR MICRO- AND NANO-SWIMMERS. Journal of Mechanics in Medicine and Biology, 2013, 13, 1340013.	0.7	1
94	Immersed Boundary-Lattice Boltzmann Method for Biological and Biomedical Flows. Communications in Computer and Information Science, 2014, , 383-392.	0.5	1
95	Energy harvesting simulation of two piezoelectric flags in tandem arrangement in the uniform flow., 2014,,.		1
96	Investigation of effects of surface roughness on coal seam gas transport using a fractal-based lattice Boltzmann method. ASEG Extended Abstracts, 2019, 2019, 1-2.	0.1	1
97	Numerical simulations of biological flows and their engineering applications. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235, 205-207.	2.1	1
98	Impact of Modelling Surface Roughness in an Arterial Stenosis. Fluids, 2022, 7, 179.	1.7	1
99	Microbial Growth Model and Stability Analysis. , 2009, , .		O
100	Numerical observation of stationary and oscillatory electro-thermo-convection in a plane layer of dielectric liquid. , 2013 , , .		0
101	Numerical investigation of electrohydrodynamic plumes for locally enhanced cooling in dielectric liquids. , 2013, , .		0
102	Effect of the mobility parameter on the oscillatory electro-convection of dielectric liquids subject to strong unipolar charge injection. , 2013 , , .		0
103	Computational Methods and Models in Circulatory and Reproductive Systems. Computational and Mathematical Methods in Medicine, 2016, 2016, 1-2.	1.3	O
104	The Parameter's Effect on the Stability in Microbial Growth Model. Journal of Computers, 2010, 5, .	0.4	0
105	The Serrated Trailing Edge Influence on Flapping-wing Acoustics. , 2020, , .		0
106	IB-LBM study of non-Newtonian flexible capsule flows in contraction-expansion microchannels. , 2020, , .		0
107	Sound generation by three-dimensional flapping wings during hovering flight. , 2020, , .		0