
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2992486/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rapid-DEM: Rapid Topographic Updates through Satellite Change Detection and UAS Data Fusion. Remote Sensing, 2022, 14, 1718.	4.0	3
2	Spatially Explicit Fuzzy Cognitive Mapping for Participatory Modeling of Stormwater Management. Land, 2021, 10, 1114.	2.9	4
3	Modeling restorative potential of urban environments by coupling viewscape analysis of lidar data with experiments in immersive virtual environments. Landscape and Urban Planning, 2020, 195, 103704.	7.5	24
4	The Magnitude of Regional‣cale Tree Mortality Caused by the Invasive Pathogen <i>Phytophthora ramorum</i> . Earth's Future, 2020, 8, e2020EF001500.	6.3	30
5	Modeling the impacts of urbanization on watershed-scale gross primary productivity and tradeoffs with water yield across the conterminous United States. Journal of Hydrology, 2020, 583, 124581.	5.4	27
6	Validating land change models based on configuration disagreement. Computers, Environment and Urban Systems, 2019, 77, 101366.	7.1	12
7	Projecting Urbanization and Landscape Change at Large Scale Using the FUTURES Model. Land, 2019, 8, 144.	2.9	12
8	Integrating multi-sensor remote sensing and species distribution modeling to map the spread of emerging forest disease and tree mortality. Remote Sensing of Environment, 2019, 231, 111238.	11.0	42
9	Forecasting and control of emerging infectious forest disease through participatory modelling. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180283.	4.0	22
10	Making It Spatial Makes It Personal: Engaging Stakeholders with Geospatial Participatory Modeling. Land, 2019, 8, 38.	2.9	20
11	Modeling landowner interactions and development patterns at the urban fringe. Landscape and Urban Planning, 2019, 182, 101-113.	7.5	31
12	A disturbance weighting analysis model (DWAM) for mapping wildfire burn severity in the presence of forest disease. Remote Sensing of Environment, 2019, 221, 108-121.	11.0	13
13	Anticipating trade-offs between urban patterns and ecosystem service production: Scenario analyses of sprawl alternatives for a rapidly urbanizing region. Computers, Environment and Urban Systems, 2019, 74, 114-125.	7.1	38
14	Tangible topographic modeling for landscape architects. International Journal of Architectural Computing, 2018, 16, 4-21.	1.5	13
15	Exploring perceived restoration potential of urban green enclosure through immersive virtual environments. Journal of Environmental Psychology, 2018, 55, 99-109.	5.1	90
16	Spatial Patterns of Development Drive Water Use. Water Resources Research, 2018, 54, 1633-1649.	4.2	21
17	Intra-annual phenology for detecting understory plant invasion in urban forests. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 142, 151-161.	11.1	19
18	Quantifying the visual-sensory landscape qualities that contribute to cultural ecosystem services using social media and LiDAR. Ecosystem Services, 2018, 31, 326-335.	5.4	91

#	Article	IF	CITATIONS
19	Novel disturbance interactions between fire and an emerging disease impact survival and growth of resprouting trees. Ecology, 2018, 99, 2217-2229.	3.2	17
20	Assessing the impact of emerging forest disease on wildfire using Landsat and KOMPSAT-2 data. Remote Sensing of Environment, 2017, 195, 218-229.	11.0	20
21	Forecasts of urbanization scenarios reveal trade-offs between landscape change and ecosystem services. Landscape Ecology, 2017, 32, 617-634.	4.2	81
22	Tangible geospatial modeling for collaborative solutions to invasive species management. Environmental Modelling and Software, 2017, 92, 176-188.	4.5	14
23	Comparing Quantity, Allocation and Configuration Accuracy of Multiple Land Change Models. Land, 2017, 6, 52.	2.9	35
24	California forests show early indications of both range shifts and local persistence under climate change. Global Ecology and Biogeography, 2016, 25, 164-175.	5.8	21
25	Accounting for residential propagule pressure improves prediction of urban plant invasion. Ecosphere, 2016, 7, e01232.	2.2	15
26	Modeling when, where, and how to manage a forest epidemic, motivated by sudden oak death in California. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5640-5645.	7.1	141
27	Changing disturbance regimes, ecological memory, and forest resilience. Frontiers in Ecology and the Environment, 2016, 14, 369-378.	4.0	947
28	Continental-scale quantification of landscape values using social media data. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12974-12979.	7.1	224
29	Wildfire and forest disease interaction lead to greater loss of soil nutrients and carbon. Oecologia, 2016, 182, 265-276.	2.0	10
30	The effect of human population size on the breeding bird diversity of urban regions. Biodiversity and Conservation, 2016, 25, 653-671.	2.6	25
31	Integrating Free and Open Source Solutions into Geospatial Science Education. ISPRS International Journal of Geo-Information, 2015, 4, 942-956.	2.9	14
32	Object-based assessment of burn severity in diseased forests using high-spatial and high-spectral resolution MASTER airborne imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 102, 38-47.	11.1	27
33	Simulating urbanization scenarios reveals tradeoffs between conservation planning strategies. Landscape and Urban Planning, 2015, 136, 28-39.	7.5	80
34	Effects of LiDAR point density and landscape context on estimates of urban forest biomass. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 101, 310-322.	11.1	77
35	Changing decisions in a changing landscape: How might forest owners in an urbanizing region respond to emerging bioenergy markets?. Land Use Policy, 2015, 49, 1-10.	5.6	19
36	Mapping burn severity in a disease-impacted forest landscape using Landsat and MASTER imagery. International Journal of Applied Earth Observation and Geoinformation, 2015, 40, 91-99.	2.8	18

#	Article	IF	CITATIONS
37	Understanding Human–Coyote Encounters in Urban Ecosystems Using Citizen Science Data: What Do Socioeconomics Tell Us?. Environmental Management, 2015, 55, 159-170.	2.7	23
38	Citizen science helps predict risk of emerging infectious disease. Frontiers in Ecology and the Environment, 2015, 13, 189-194.	4.0	66
39	Go with the flow: geospatial analytics to quantify hydrologic landscape connectivity for passively dispersed microorganisms. International Journal of Geographical Information Science, 2014, 28, 1626-1641.	4.8	9
40	Modelling species distributions with remote sensing data: bridging disciplinary perspectives. Journal of Biogeography, 2013, 40, 2226-2227.	3.0	61
41	Biodiversity Conservation in the Face of Dramatic Forest Disease: An Integrated Conservation Strategy for Tanoak (<i>Notholithocarpus densiflorus</i>) Threatened by Sudden Oak Death. Madroño, 2013, 60, 151-164.	0.4	18
42	Unexpected redwood mortality from synergies between wildfire and an emerging infectious disease. Ecology, 2013, 94, 2152-2159.	3.2	57
43	LiDAR-Landsat data fusion for large-area assessment of urban land cover: Balancing spatial resolution, data volume and mapping accuracy. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 74, 110-121.	11.1	105
44	Common Factors Drive Disease and Coarse Woody Debris Dynamics in Forests Impacted by Sudden Oak Death. Ecosystems, 2012, 15, 242-255.	3.4	37
45	Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Diversity and Distributions, 2012, 18, 73-83.	4.1	259
46	Accounting for multiâ€scale spatial autocorrelation improves performance of invasive species distribution modelling (iSDM). Journal of Biogeography, 2012, 39, 42-55.	3.0	88
47	Ecosystem transformation by emerging infectious disease: loss of large tanoak from California forests. Journal of Ecology, 2012, 100, 712-722.	4.0	111
48	Spatial variation and prediction of forest biomass in a heterogeneous landscape. Journal of Forestry Research, 2012, 23, 13-22.	3.6	7
49	Landscape Epidemiology and Control of Pathogens with Cryptic and Long-Distance Dispersal: Sudden Oak Death in Northern Californian Forests. PLoS Computational Biology, 2012, 8, e1002328.	3.2	78
50	Spatial estimation of the density and carbon content of host populations for Phytophthora ramorum in California and Oregon. Forest Ecology and Management, 2011, 262, 989-998.	3.2	23
51	Forest species diversity reduces disease risk in a generalist plant pathogen invasion. Ecology Letters, 2011, 14, 1108-1116.	6.4	143
52	When is connectivity important? A case study of the spatial pattern of sudden oak death. Oikos, 2010, 119, 485-493.	2.7	44
53	Alleviating the Modifiable Areal Unit Problem within Probeâ€Based Geospatial Analyses. Computer Graphics Forum, 2010, 29, 923-932.	3.0	13
54	Apparent competition in canopy trees determined by pathogen transmission rather than susceptibility. Ecology, 2010, 91, 327-333.	3.2	85

#	Article	IF	CITATIONS
55	Pre-impact forest composition and ongoing tree mortality associated with sudden oak death in the Big Sur region; California. Forest Ecology and Management, 2010, 259, 2342-2354.	3.2	46
56	Predicting potential and actual distribution of sudden oak death in Oregon: Prioritizing landscape contexts for early detection and eradication of disease outbreaks. Forest Ecology and Management, 2010, 260, 1026-1035.	3.2	59
57	Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?. Ecological Modelling, 2009, 220, 3248-3258.	2.5	229
58	Predicting Forest Microclimate in Heterogeneous Landscapes. Ecosystems, 2009, 12, 1158-1172.	3.4	71
59	Impact of sudden oak death on tree mortality in the Big Sur ecoregion of California. Biological Invasions, 2008, 10, 1243-1255.	2.4	85
60	Susceptibility to <i>Phytophthora ramorum</i> in a key infectious host: landscape variation in host genotype, host phenotype, and environmental factors. New Phytologist, 2008, 177, 756-766.	7.3	42
61	Multiâ€scale patterns of human activity and the incidence of an exotic forest pathogen. Journal of Ecology, 2008, 96, 766-776.	4.0	64
62	Effects of dam operation and land use on stream channel morphology and riparian vegetation. Geomorphology, 2006, 82, 412-429.	2.6	134
63	A geographic analysis of wind turbine placement in Northern California. Energy Policy, 2006, 34, 2137-2149.	8.8	133
64	Mapping the risk of establishment and spread of sudden oak death in California. Forest Ecology and Management, 2004, 200, 195-214.	3.2	125
65	Environmental factors influencing spatial patterns of shrub diversity in chaparral, Santa Ynez Mountains, California. Journal of Vegetation Science, 2001, 12, 41-52.	2.2	37
66	Automated mapping of conformity between topographic and geological surfaces. Computers and Geosciences, 2000, 26, 815-829.	4.2	65
67	Rapid sampling of plant species composition for assessing vegetation patterns in rugged terrain. Landscape Ecology, 2000, 15, 697-711.	4.2	11
68	HYDROGEOMORPHIC EFFECTS OF BEAVER DAMS IN GLACIER NATIONAL PARK, MONTANA. Physical Geography, 1999, 20, 436-446.	1.4	61