Monika Fleischer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/299242/publications.pdf

Version: 2024-02-01

331259 414034 1,171 62 21 32 citations h-index g-index papers 63 63 63 1600 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Hexagonal arrays of plasmonic gold nanopyramids on flexible substrates for surface-enhanced Raman scattering. Nanotechnology, 2022, 33, 095303.	1.3	4
2	Sensitive Interferometric Plasmon Ruler Based on a Single Nanodimer. Journal of Physical Chemistry C, 2021, 125, 6486-6493.	1.5	10
3	Microellipsometry study of plasmonic properties of metal–insulator–metal structures with ordered lattices of nanoparticles. Journal of Applied Physics, 2021, 129, 123104.	1.1	5
4	Mechanically Tunable Nanogap Antennas: Singleâ€Structure Effects and Multiâ€Structure Applications. Advanced Optical Materials, 2021, 9, 2100326.	3.6	9
5	Atomic Layer Deposition of Bioactive TiO ₂ Thin Films on Polyetheretherketone for Orthopedic Implants. ACS Applied Materials & Interfaces, 2021, 13, 3536-3546.	4.0	24
6	Mechanically Tunable Nanogap Antennas: Singleâ€Structure Effects and Multiâ€Structure Applications (Advanced Optical Materials 20/2021). Advanced Optical Materials, 2021, 9, 2170082.	3.6	O
7	Overcoming the Rate-Directionality Trade-off: A Room-Temperature Ultrabright Quantum Light Source. ACS Nano, 2021, 15, 17384-17391.	7.3	6
8	Miniaturized fractal optical nanoantennas defined by focused helium ion beam milling. Nanotechnology, 2020, 31, 075301.	1.3	9
9	Nanoscale plasmonic phase sensor. Analytical and Bioanalytical Chemistry, 2020, 412, 3405-3411.	1.9	4
10	Direct phase mapping of the light scattered by single plasmonic nanoparticles. Nanoscale, 2020, 12, 1083-1090.	2.8	7
11	Structure–Transport Correlation Reveals Anisotropic Charge Transport in Coupled PbS Nanocrystal Superlattices. Advanced Materials, 2020, 32, 2002254.	11.1	19
12	Optically and electrically driven nanoantennas. Beilstein Journal of Nanotechnology, 2020, 11, 1542-1545.	1.5	1
13	Selectively accessing the hotspots of optical nanoantennas by self-aligned dry laser ablation. Nanoscale, 2020, 12, 19170-19177.	2.8	2
14	Enhancement of the second harmonic signal of nonlinear crystals by self-assembled gold nanoparticles. Journal of Chemical Physics, 2020, 152, 104711.	1.2	9
15	Accessing the Hotspots of Cavity Plasmon Modes in Vertical Metal–Insulator–Metal Structures for Surface Enhanced Raman Scattering. Advanced Optical Materials, 2020, 8, 1901734.	3.6	16
16	Enhancement of the second harmonic signal of nonlinear crystals by a single metal nanoantenna. Nanoscale, 2020, 12, 23105-23115.	2.8	6
17	A flexible platform for controlled optical and electrical effects in tailored plasmonic break junctions. Nanophotonics, 2020, 9, 1391-1400.	2.9	10
18	Enhanced two-photon photoluminescence assisted by multi-resonant characteristics of a gold nanocylinder. Nanophotonics, 2020, 9, 4009-4019.	2.9	6

#	Article	IF	CITATIONS
19	Second harmonic generation enhancement by polarization-matched nanostructures -INVITED. EPJ Web of Conferences, 2020, 238, 05001.	0.1	0
20	Relative spectral tuning of the vertical versus base modes in plasmonic nanocones. Nanotechnology, 2019, 30, 415201.	1.3	8
21	Time-effective strategies for the fabrication of poly- and single-crystalline gold nano-structures by focused helium ion beam milling. Nanotechnology, 2019, 30, 235302.	1.3	12
22	Plasmonic mode conversion in individual tilted 3D nanostructures. Nanoscale, 2019, 11, 5429-5440.	2.8	14
23	Strong second-harmonic generation from Au–Al heterodimers. Nanoscale, 2019, 11, 23475-23481.	2.8	13
24	Transparent Graphene/PEDOT:PSS Microelectrodes for Electro―and Optophysiology. Advanced Materials Technologies, 2019, 4, 1800318.	3.0	36
25	Shaping and polarizing fluorescence emission of a polycrystalline organic semiconductor film by plasmonic nanogratings. Journal of the Optical Society of America B: Optical Physics, 2019, 36, E9.	0.9	3
26	Carrier recombination and plasmonic emission channels in metallic photoluminescence. Nanoscale, 2018, 10, 8240-8245.	2.8	22
27	Collective Effects in Second-Harmonic Generation from Plasmonic Oligomers. Nano Letters, 2018, 18, 2571-2580.	4.5	46
28	Active optical antennas driven by inelastic electron tunneling. Nanophotonics, 2018, 7, 1503-1516.	2.9	15
29	Self-assembled quasi-hexagonal arrays of gold nanoparticles with small gaps for surface-enhanced Raman spectroscopy. Beilstein Journal of Nanotechnology, 2018, 9, 1977-1985.	1.5	9
30	Continuous reversible tuning of the gap size and plasmonic coupling of bow tie nanoantennas on flexible substrates. Nanoscale, 2018, 10, 14915-14922.	2.8	40
31	Nonlinear plasmonic behavior of nanohole arrays in thin gold films for imaging lipids. Applied Physics Letters, 2018, 112, .	1.5	7
32	Single particle dark-field spectroscopy of spherical dimers with down to sub-10 nm gaps fabricated by the annealing of nano-pillars. Nanophotonics, 2018, 7, 1317-1324.	2.9	10
33	Template stripping and bonding of smooth probes with nanoscale features for tip-enhanced Raman spectroscopy. Microelectronic Engineering, 2017, 171, 31-36.	1.1	4
34	Enhancing light absorption in organic semiconductor thin films by one-dimensional gold nanowire gratings. Physical Review Materials, 2017, 1 , .	0.9	5
35	Direct Comparison of Second Harmonic Generation and Two-Photon Photoluminescence from Single Connected Gold Nanodimers. Journal of Physical Chemistry C, 2016, 120, 17699-17710.	1.5	30

 ${}_{36} \qquad \text{Roadmap on biosensing and photonics with advanced nano-optical methods. Journal of Optics (United) Tj ETQq0 0 \\ {}_{1.0}^{0} \text{rgBT /Oyerlock 10}$

#	Article	IF	Citations
37	Linear and non-linear optical properties of plasmonic nano-antennas. , 2016, , .		О
38	Graphite/graphene grown on molybdenum via CVD. , 2015, , .		0
39	Coupling single quantum dots to plasmonic nanocones: optical properties. Faraday Discussions, 2015, 184, 321-337.	1.6	22
40	Self-aligned placement and detection of quantum dots on the tips of individual conical plasmonic nanostructures. Nanoscale, 2015, 7, 14691-14696.	2.8	28
41	PlasmonicÂverticalÂdimer arrays as elements for biosensing. Analytical and Bioanalytical Chemistry, 2015, 407, 8225-8231.	1.9	18
42	Capturing molecules with plasmonic nanotips in microfluidic channels by dielectrophoresis. Lab on A Chip, 2015, 15, 1066-1071.	3.1	27
43	Nonlinear optical point light sources through field enhancement at metallic nanocones. Optics Express, 2014, 22, 15484.	1.7	36
44	Fabrication and characterization of combined metallic nanogratings and ITO electrodes for organic photovoltaic cells. Microelectronic Engineering, 2014, 119, 122-126.	1.1	14
45	Parallel Fabrication of Plasmonic Nanocone Sensing Arrays. Small, 2013, 9, 3987-3992.	5.2	48
46	A single particle plasmon resonance study of 3D conical nanoantennas. Nanoscale, 2013, 5, 7861.	2.8	43
47	Nanosphere Lithography: Parallel Fabrication of Plasmonic Nanocone Sensing Arrays (Small 23/2013). Small, 2013, 9, 4088-4088.	5.2	3
48	Near-field scanning optical microscopy nanoprobes. Nanotechnology Reviews, 2012, 1, 313-338.	2.6	28
49	Carbon nanotubes grown on polyimide by chemical vapour deposition. , 2012, , .		2
50	Gold Nanocone Near-Field Scanning Optical Microscopy Probes. ACS Nano, 2011, 5, 2570-2579.	7.3	82
51	Fabrication of metallic nanocones by induced deposition of etch masks and ion milling. Microelectronic Engineering, 2011, 88, 2247-2250.	1.1	24
52	Titanium surfaces structured with regular geometryâ€"material investigations and cell morphology. Surface and Interface Analysis, 2010, 42, 497-501.	0.8	12
53	Self-aligned gold nanocone probe tips. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C6O34-C6O37.	0.6	5
54	Tailoring gold nanostructures for near-field optical applications. Nanotechnology, 2010, 21, 065301.	1.3	42

#	Article	IF	CITATION
55	Parabolic mirrorâ€assisted tipâ€enhanced spectroscopic imaging for nonâ€transparent materials. Journal of Raman Spectroscopy, 2009, 40, 1371-1376.	1.2	76
56	Nanocones on transparent substrates for investigations in scanning probe microscopes. Microelectronic Engineering, 2009, 86, 1219-1221.	1.1	18
57	Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope. Applied Physics Letters, 2008, 93, 111114.	1.5	53
58	Catalyst patterning for carbon nanotube growth on elevating posts by self-aligned double-layer electron beam lithography. Journal of Vacuum Science & Technology B, 2008, 26, 2447-2450.	1.3	4
59	Influence of temperature on HSQ electron-beam lithography. Journal of Vacuum Science & Technology B, 2007, 25, 2045-2048.	1.3	58
60	Arrays of Well-Defined Size-Tunable Metallic Nano-Cones for Plasmonic Applications. Materials Research Society Symposia Proceedings, 2007, 1055, 4.	0.1	2
61	Fabrication of metallic nanostructures for investigating plasmon-induced field enhancement. Microelectronic Engineering, 2007, 84, 1589-1592.	1.1	36
62	Contactless capturing of particles in liquid using pulsed alternating dielectrophoresis. Journal of Vacuum Science & Technology B, 2006, 24, 3184.	1.3	6