
Pinggen Xi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2992379/publications.pdf Version: 2024-02-01

DINCCEN XI

#	Article	IF	CITATIONS
1	In vitro and in vivo effectiveness of phenolic compounds for the control of postharvest gray mold of table grapes. Postharvest Biology and Technology, 2018, 139, 106-114.	6.0	79
2	Fulvic acid-induced disease resistance to Botrytis cinerea in table grapes may be mediated by regulating phenylpropanoid metabolism. Food Chemistry, 2019, 286, 226-233.	8.2	59
3	Antifungal Activity of Natural Volatile Organic Compounds against Litchi Downy Blight Pathogen Peronophythora litchii. Molecules, 2018, 23, 358.	3.8	58
4	The mating-type locus b of the sugarcane smut Sporisorium scitamineum is essential for mating, filamentous growth and pathogenicity. Fungal Genetics and Biology, 2016, 86, 1-8.	2.1	53
5	An RXLR effector PlAvh142 from <i>Peronophythora litchii</i> triggers plant cell death and contributes to virulence. Molecular Plant Pathology, 2020, 21, 415-428.	4.2	42
6	Mitogen-Activated Protein Kinases Are Associated with the Regulation of Physiological Traits and Virulence in Fusarium oxysporum f. sp. cubense. PLoS ONE, 2015, 10, e0122634.	2.5	38
7	Pectin acetylesterase PAE5 is associated with the virulence of plant pathogenic oomycete Peronophythora litchii. Physiological and Molecular Plant Pathology, 2019, 106, 16-22.	2.5	33
8	A Puf RNA-binding protein encoding gene PIM90 regulates the sexual and asexual life stages of the litchi downy blight pathogen Peronophythora litchii. Fungal Genetics and Biology, 2017, 98, 39-45.	2.1	28
9	Biological activity of pterostilbene against Peronophythora litchii, the litchi downy blight pathogen. Postharvest Biology and Technology, 2018, 144, 29-35.	6.0	27
10	ldentification and application of a unique genetic locus in diagnosis of <i>Fusarium oxysporum</i> f. sp. <i>cubense</i> tropical race 4. Canadian Journal of Plant Pathology, 2013, 35, 482-493.	1.4	21
11	Improved dominant selection markers and co-culturing conditions for efficient Agrobacterium tumefaciens-mediated transformation of Ustilago scitaminea. Biotechnology Letters, 2014, 36, 1309-1314.	2.2	20
12	PIMAPK10, a Mitogen-Activated Protein Kinase (MAPK) in Peronophythora litchii, Is Required for Mycelial Growth, Sporulation, Laccase Activity, and Plant Infection. Frontiers in Microbiology, 2018, 9, 426.	3.5	19
13	Efficacy and potential mechanisms of benzothiadiazole inhibition on postharvest litchi downy blight. Postharvest Biology and Technology, 2021, 181, 111660.	6.0	18
14	The Basic Leucine Zipper Transcription Factor PIBZP32 Associated with the Oxidative Stress Response Is Critical for Pathogenicity of the Lychee Downy Blight Oomycete Peronophythora litchii. MSphere, 2020, 5, .	2.9	17
15	Synergistic Effects of Resveratrol and Pyrimethanil against Botrytis cinerea on Grape. Molecules, 2018, 23, 1455.	3.8	17
16	A Dual-Color Imaging System for Sugarcane Smut Fungus <i>Sporisorium scitamineum</i> . Plant Disease, 2016, 100, 2357-2362.	1.4	16
17	Identification and Functional Analysis of the Pheromone Response Factor Gene of Sporisorium scitamineum. Frontiers in Microbiology, 2019, 10, 2115.	3.5	15
18	Burkholderia gladioli CGB10: A Novel Strain Biocontrolling the Sugarcane Smut Disease. Microorganisms, 2020, 8, 1943.	3.6	13

Pinggen Xi

#	Article	IF	CITATIONS
19	Organic mulch can suppress litchi downy blight through modification of soil microbial community structure and functional potentials. BMC Microbiology, 2022, 22, .	3.3	13
20	Efficacy of pterostilbene suppression of postharvest gray mold in table grapes and potential mechanisms. Postharvest Biology and Technology, 2022, 183, 111745.	6.0	11
21	The Mitogen-Activated Protein Kinase PlMAPK2 Is Involved in Zoosporogenesis and Pathogenicity of Peronophythoralitchii. International Journal of Molecular Sciences, 2021, 22, 3524.	4.1	9
22	Autophagy-Related Gene PlATG6a Is Involved in Mycelial Growth, Asexual Reproduction and Tolerance to Salt and Oxidative Stresses in PeronophythoraÁlitchii. International Journal of Molecular Sciences, 2022, 23, 1839.	4.1	9
23	A Destructive Leaf Spot and Blight Caused by <i>Alternaria kareliniae</i> sp. nov. on a Sand-Stabilizing Plant, Caspian Sea Karelinia. Plant Disease, 2018, 102, 172-178.	1.4	8
24	First Report of Anthracnose Fruit Rot Caused by <i>Colletotrichum fioriniae</i> on Litchi in China. Plant Disease, 2021, 105, 1225-1225.	1.4	8
25	A C2H2 Zinc Finger Protein PlCZF1 Is Necessary for Oospore Development and Virulence in Peronophythora litchii. International Journal of Molecular Sciences, 2022, 23, 2733.	4.1	8
26	FoQDE2-dependent milRNA promotes Fusarium oxysporum f. sp. cubense virulence by silencing a glycosyl hydrolase coding gene expression. PLoS Pathogens, 2022, 18, e1010157.	4.7	8
27	Detection of Peronophythora litchii on lychee by loop-mediated isothermal amplification assay. Crop Protection, 2021, 139, 105370.	2.1	7
28	A Cytochrome B5-Like Heme/Steroid Binding Domain Protein, PlCB5L1, Regulates Mycelial Growth, Pathogenicity and Oxidative Stress Tolerance in Peronophythora litchii. Frontiers in Plant Science, 2021, 12, 783438.	3.6	4