Xiaolin Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2992330/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transition metal doping effect and high catalytic activity of CeO2–TiO2 for chlorinated VOCs degradation. Journal of Rare Earths, 2022, 40, 745-752.	4.8	16
2	Trace CO elimination in H ₂ -rich streams with a wide operation temperature window: Co deposited CuO–CeO ₂ catalysts. Physical Chemistry Chemical Physics, 2022, 24, 2070-2079.	2.8	6
3	Simulated solar light-driven photothermal preferential oxidation of carbon monoxide in H2-rich streams over fast-synthesized CuCeO2–x nanorods. Applied Catalysis B: Environmental, 2022, 310, 121334.	20.2	12
4	Insights into the structure-performance relationship of CuOx-CeO2 catalysts for preferential oxidation of CO: Investigation on thermally induced copper migration process. Applied Surface Science, 2022, 600, 154100.	6.1	6
5	Recent progress in biomass-derived carbon materials used for secondary batteries. Sustainable Energy and Fuels, 2021, 5, 3017-3038.	4.9	36
6	Elucidating the structure, redox properties and active entities of high-temperature thermally aged CuO _x –CeO ₂ catalysts for CO-PROX. Physical Chemistry Chemical Physics, 2021, 23, 15582-15590.	2.8	16
7	New Design and Construction of Abundant Active Surface Interfacial Copper Entities in Cu _{<i>x</i>} Ce _{1–<i>x</i>} O ₂ Nanorod Catalysts for CO-PROX. Journal of Physical Chemistry C, 2021, 125, 9178-9189.	3.1	19
8	A review on electrochemical synthesized copper-based catalysts for electrochemical reduction of CO2 to C2+ products. Chemical Engineering Journal, 2021, 414, 128825.	12.7	114
9	Synthesis and Surface Engineering of Composite Anodes by Coating Thin-Layer Silicon on Carbon Cloth for Lithium Storage with High Stability and Performance. ACS Applied Energy Materials, 2021, 4, 6982-6990.	5.1	6
10	Synergistic effect of Pt nanoparticles and micro-mesoporous ZSM-5 in VOCs low-temperature removal. Journal of Environmental Sciences, 2021, 107, 87-97.	6.1	22
11	Two-Dimensional Cu ₂ MoS ₄ -Loaded Silicon Nanospheres as an Anode for High-Performance Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 13061-13069.	5.1	10
12	Investigation of the re-dispersion of matrix Cu species in Cu _x Ce _{1â^'x} O ₂ nanorod catalysts and its effect on the catalytic performance in CO-PROX. Catalysis Science and Technology, 2020, 10, 4766-4775.	4.1	18
13	Hollow-structure engineering of a silicon–carbon anode for ultra-stable lithium-ion batteries. Dalton Transactions, 2020, 49, 5669-5676.	3.3	30
14	Shape-controlled CuxCe1-xO2 nanorods catalyst and the active components functioned in selective oxidation of CO in hydrogen-rich stream. Journal of Power Sources, 2020, 451, 227757.	7.8	34
15	Elimination of 1,2-dichloroethane over (Ce, Cr) O2/Nb2O5 catalysts: synergistic performance between oxidizing ability and acidity. Chinese Journal of Catalysis, 2019, 40, 1100-1108.	14.0	31
16	The catalytic performance of isolated-dispersed Au on nanosized CeO2 for CO preferential oxidation in H2-rich stream. Applied Surface Science, 2019, 481, 1072-1079.	6.1	18
17	Effect of PdO structure properties on catalytic performance of Pd/Ce0.67Zr0.33O2 catalyst for CO, HC and NO elimination. Journal of Rare Earths, 2019, 37, 706-713.	4.8	7
18	Morphology effect on the structure-activity relationship of Rh/CeO2-ZrO2 catalysts. Chemical Engineering Journal, 2019, 368, 719-729	12.7	46

XIAOLIN GUO

#	Article	IF	CITATIONS
19	Investigation on the structure-activity relationship of Nb2O5 promoting CeO2-CrOx-Nb2O5 catalysts for 1,2-dichloroethane elimination. Molecular Catalysis, 2019, 470, 75-81.	2.0	18
20	Doping effect of transition metals (Zr, Mn, Ti and Ni) on well-shaped CuO/CeO ₂ (rods): nano/micro structure and catalytic performance for selective oxidation of CO in excess H ₂ . Physical Chemistry Chemical Physics, 2018, 20, 25983-25994.	2.8	37
21	New insights into the effect of morphology on catalytic properties of MnO _x –CeO ₂ mixed oxides for chlorobenzene degradation. RSC Advances, 2018, 8, 25283-25291.	3.6	25
22	Influence of the copper coverage on the dispersion of copper oxide and the catalytic performance of CuO/CeO2(rod) catalysts in preferential oxidation of CO in excess hydrogen. Journal of Power Sources, 2017, 371, 119-128.	7.8	36
23	Identification of the nano/micro structure of CeO2(rod) and the essential role of interfacial copper-ceria interaction in CuCe(rod) for selective oxidation of CO in H2-rich streams. Journal of Power Sources, 2017, 361, 39-53.	7.8	64
24	A new insight into the morphology effect of ceria on CuO/CeO ₂ catalysts for CO selective oxidation in hydrogen-rich gas. Catalysis Science and Technology, 2016, 6, 3862-3871.	4.1	119
25	Accelerating effect of ZrO 2 doping on catalytic performance and thermal stability of CeO 2 –CrO x mixed oxide for 1,2-dichloroethane elimination. Chemical Engineering Journal, 2016, 285, 544-553. ———————————————————————————————————	12.7	52
26	Catalytic performance of manganese doped CuO–CeO 2 catalysts for selective oxidation of CO in hydrogen-rich gas. Fuel, 2016, 163, 56-64.	6.4	114