
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2992241/publications.pdf Version: 2024-02-01

VIEAN LI

#	Article	IF	CITATIONS
1	Highâ€flux and solventâ€selective membranes with aromatic functionalities and dualâ€layer structures. Journal of Applied Polymer Science, 2022, 139, 51418.	1.3	1
2	Sulfonated TiO2 quantum dots enabled constructing of bicarbonate highways in quaternary ammonium poly (ether ether ketone) membranes for efficient CO2 separation. Journal of Membrane Science, 2022, 652, 120491.	4.1	2
3	MXene versus graphene oxide: Investigation on the effects of 2D nanosheets in mixed matrix membranes for CO2 separation. Journal of Membrane Science, 2021, 620, 118850.	4.1	65
4	Simultaneous Increase of Solvent Flux and Rejection of Thin-Film Composite Membranes by Incorporation of Dopamine-Modified Mesoporous Silica. ACS Omega, 2021, 6, 16241-16250.	1.6	2
5	miR-3065-3p promotes stemness and metastasis by targeting CRLF1 in colorectal cancer. Journal of Translational Medicine, 2021, 19, 429.	1.8	12
6	Grafting high content of imidazolium polymer brushes on graphene oxide for nanocomposite membranes with enhanced anion transport. Reactive and Functional Polymers, 2020, 146, 104447.	2.0	7
7	Carbon Quantum Dot-Enabled Tuning of the Microphase Structures of Poly(ether- <i>b</i> -amide) Membrane for CO ₂ Separation. Industrial & Engineering Chemistry Research, 2020, 59, 14960-14969.	1.8	13
8	A fast response, self-powered and room temperature near infrared-terahertz photodetector based on a MAPbl ₃ /PEDOT:PSS composite. Journal of Materials Chemistry C, 2020, 8, 12148-12154.	2.7	41
9	Exploration of the Synergy Between 2D Nanosheets and a Non-2D Filler in Mixed Matrix Membranes for Gas Separation. Frontiers in Chemistry, 2020, 8, 58.	1.8	22
10	Enhanced CO2 separation in membranes with anion-cation dual pathways. Journal of CO2 Utilization, 2020, 38, 355-365.	3.3	6
11	Two-dimensional nanochannel membranes for molecular and ionic separations. Chemical Society Reviews, 2020, 49, 1071-1089.	18.7	242
12	Oriented Zeolitic Imidazolate Framework (ZIF) Nanocrystal Films for Molecular Separation Membranes. ACS Applied Nano Materials, 2020, 3, 3839-3846.	2.4	20
13	Elucidating Ultrafast Molecular Permeation through Wellâ€Defined 2D Nanochannels of Lamellar Membranes. Angewandte Chemie, 2019, 131, 18695-18700.	1.6	25
14	Elucidating Ultrafast Molecular Permeation through Wellâ€Defined 2D Nanochannels of Lamellar Membranes. Angewandte Chemie - International Edition, 2019, 58, 18524-18529.	7.2	87
15	Interface engineering of mixed matrix membrane via CO2-philic polymer brush functionalized graphene oxide nanosheets for efficient gas separation. Journal of Membrane Science, 2019, 586, 23-33.	4.1	42
16	Mixed matrix membrane contactor containing core-shell hierarchical Cu@4A filler for efficient SO2 capture. Journal of Hazardous Materials, 2019, 376, 160-169.	6.5	16
17	Nanoparticle-Assembled Thin Film with Amphipathic Nanopores for Organic Solvent Nanofiltration. ACS Applied Materials & Interfaces, 2019, 11, 17804-17813.	4.0	44
18	Beetleâ€Inspired Assembly of Heterostructured Lamellar Membranes with Polymer Cluster–Patterned Surface for Enhanced Molecular Permeation. Advanced Functional Materials, 2019, 29, 1900819.	7.8	34

#	Article	IF	CITATIONS
19	Mixed matrix membranes containing well-designed composite microcapsules for CO2 separation. Journal of Membrane Science, 2019, 572, 650-657.	4.1	38
20	Mixed matrix membranes comprising aminosilane-functionalized graphene oxide for enhanced CO2 separation. Journal of Membrane Science, 2019, 570-571, 343-354.	4.1	175
21	Adsorption-Assisted Interfacial Polymerization toward Ultrathin Active Layers for Ultrafast Organic Permeation. ACS Applied Materials & Interfaces, 2018, 10, 10445-10453.	4.0	32
22	Synergistic effects of zeolite imidazole framework@graphene oxide composites in humidified mixed matrix membranes on CO ₂ separation. RSC Advances, 2018, 8, 6099-6109.	1.7	93
23	Porous nanofibrous composite membrane for unparalleled proton conduction. Journal of Membrane Science, 2018, 550, 136-144.	4.1	25
24	Investigating the nanostructures and proton transfer properties of Nafion-GO hybrid membranes. Journal of Membrane Science, 2018, 555, 327-336.	4.1	51
25	Molecularâ€Level Hybridization of Nafion with Quantum Dots for Highly Enhanced Proton Conduction. Advanced Materials, 2018, 30, e1707516.	11.1	122
26	Carbon dots-incorporated composite membrane towards enhanced organic solvent nanofiltration performance. Journal of Membrane Science, 2018, 549, 1-11.	4.1	83
27	Polydopamine-enabled distribution of polysiloxane domains in polyamide thin-film nanocomposite membranes for organic solvent nanofiltration. Separation and Purification Technology, 2018, 205, 140-150.	3.9	12
28	Acid-base block copolymer brushes grafted graphene oxide to enhance proton conduction of polymer electrolyte membrane. Journal of Membrane Science, 2017, 531, 47-58.	4.1	39
29	Novel thin-film nanocomposite membranes filled with multi-functional Ti 3 C 2 T x nanosheets for task-specific solvent transport. Composites Part A: Applied Science and Manufacturing, 2017, 100, 139-149.	3.8	90
30	Perspectives on water-facilitated CO ₂ capture materials. Journal of Materials Chemistry A, 2017, 5, 6794-6816.	5.2	56
31	Channel-facilitated molecule and ion transport across polymer composite membranes. Chemical Society Reviews, 2017, 46, 6725-6745.	18.7	90
32	Graphene Oxide Membranes with Heterogeneous Nanodomains for Efficient CO ₂ Separations. Angewandte Chemie - International Edition, 2017, 56, 14246-14251.	7.2	121
33	Graphene Oxide Membranes with Heterogeneous Nanodomains for Efficient CO ₂ Separations. Angewandte Chemie, 2017, 129, 14434-14439.	1.6	13
34	Bioadhesion-inspired fabrication of robust thin-film composite membranes with tunable solvent permeation properties. RSC Advances, 2016, 6, 103981-103992.	1.7	15
35	Tuning the microstructure and permeation property of thin film nanocomposite membrane by functionalized inorganic nanospheres for solvent resistant nanofiltration. Separation and Purification Technology, 2016, 165, 60-70.	3.9	49
36	Polymer-inorganic hybrid proton conductive membranes: Effect of the interfacial transfer pathways. Electrochimica Acta, 2016, 212, 426-439.	2.6	44

#	Article	IF	CITATIONS
37	Ti ₃ C ₂ T _{<i>x</i>} Filler Effect on the Proton Conduction Property of Polymer Electrolyte Membrane. ACS Applied Materials & Interfaces, 2016, 8, 20352-20363.	4.0	104
38	Comparison of facilitated transport behavior and separation properties of membranes with imidazole groups and zinc ions as CO2 carriers. Journal of Membrane Science, 2016, 505, 44-52.	4.1	34
39	Embedding sulfonated lithium ion-sieves into polyelectrolyte membrane to construct efficient proton conduction pathways. Journal of Membrane Science, 2016, 501, 109-122.	4.1	22
40	Constructing dual-interfacial proton-conducting pathways in nanofibrous composite membrane for efficient proton transfer. Journal of Membrane Science, 2016, 505, 108-118.	4.1	43
41	Constructing Ionic Liquid-Filled Proton Transfer Channels within Nanocomposite Membrane by Using Functionalized Graphene Oxide. ACS Applied Materials & Interfaces, 2016, 8, 588-599.	4.0	67
42	Tuning the performance of anion exchange membranes by embedding multifunctional nanotubes into a polymer matrix. Journal of Membrane Science, 2016, 498, 242-253.	4.1	68
43	Constructing CO2 transport passageways in Matrimid® membranes using nanohydrogels for efficient carbon capture. Journal of Membrane Science, 2015, 474, 156-166.	4.1	45
44	Composite proton exchange membranes based on phosphosilicate sol and sulfonated poly(ether ether) Tj ETQq(0 0 0 _{4.0} gBT	/Oyerlock 10

45	Polyelectrolyte microcapsules as ionic liquid reservoirs within ionomer membrane to confer high anhydrous proton conductivity. Journal of Power Sources, 2015, 279, 667-677.	4.0	28
46	Enhanced proton conductivities of nanofibrous composite membranes enabled by acid–base pairs under hydrated and anhydrous conditions. Journal of Membrane Science, 2015, 482, 1-12.	4.1	68
47	Anionic surfactant-doped Pebax membrane with optimal free volume characteristics for efficient CO 2 separation. Journal of Membrane Science, 2015, 493, 460-469.	4.1	34
48	Tuning the Performance of Composite Membranes by Optimizing PDMS Content and Cross-Linking Time for Solvent Resistant Nanofiltration. Industrial & Engineering Chemistry Research, 2015, 54, 6175-6186.	1.8	18
49	Incorporating one-dimensional aminated titania nanotubes into sulfonated poly(ether ether ketone) membrane to construct CO2-facilitated transport pathways for enhanced CO2 separation. Journal of Membrane Science, 2015, 488, 13-29.	4.1	49
50	Constructing proton-conductive highways within an ionomer membrane by embedding sulfonated polymer brush modified graphene oxide. Journal of Power Sources, 2015, 286, 445-457.	4.0	140
51	Mixed matrix membranes composed of sulfonated poly(ether ether ketone) and a sulfonated metal–organic framework for gas separation. Journal of Membrane Science, 2015, 488, 67-78.	4.1	91
52	Improved oil/water emulsion separation performance of PVC/CPVC blend ultrafiltration membranes by fluorination treatment. Desalination and Water Treatment, 2015, 55, 304-314.	1.0	12
53	Nanohybrid membranes with hydroxide ion transport highways constructed from imidazolium-functionalized graphene oxide. RSC Advances, 2015, 5, 88736-88747.	1.7	19
54	Graphene oxide-embedded nanocomposite membrane for solvent resistant nanofiltration with enhanced rejection ability. Chemical Engineering Science, 2015, 138, 227-238.	1.9	110

#	Article	IF	CITATIONS
55	Anhydrous proton exchange membranes comprising of chitosan and phosphorylated graphene oxide for elevated temperature fuel cells. Journal of Membrane Science, 2015, 495, 48-60.	4.1	105
56	Tunable Solvent Permeation Properties of Thin Film Nanocomposite Membrane by Constructing Dual-Pathways Using Cyclodextrins for Organic Solvent Nanofiltration. ACS Sustainable Chemistry and Engineering, 2015, 3, 1925-1933.	3.2	47
57	Synergistic proton transfer through nanofibrous composite membranes by suitably combining proton carriers from the nanofiber mat and pore-filling matrix. Journal of Materials Chemistry A, 2015, 3, 21832-21841.	5.2	66
58	Trapping bound water within a polymer electrolyte membrane of calcium phosphotungstate for efficient CO ₂ capture. Chemical Communications, 2015, 51, 1901-1904.	2.2	15
59	Anhydrous proton exchange membrane of sulfonated poly(ether ether ketone) enabled by polydopamine-modified silica nanoparticles. Electrochimica Acta, 2015, 152, 443-455.	2.6	150
60	Enhanced CO2 separation properties by incorporating poly(ethylene glycol)-containing polymeric submicrospheres into polyimide membrane. Journal of Membrane Science, 2015, 473, 310-317.	4.1	47
61	Facilitated transport of small molecules and ions for energy-efficient membranes. Chemical Society Reviews, 2015, 44, 103-118.	18.7	211
62	Enhancing Structural Stability and Pervaporation Performance of Composite Membranes by Coating Gelatin onto Hydrophilically Modified Support Layer. Chinese Journal of Chemical Engineering, 2014, 22, 19-27.	1.7	9
63	Pervaporation dehydration of ethanol by hyaluronic acid/sodium alginate two-active-layer composite membranes. Carbohydrate Polymers, 2014, 99, 158-165.	5.1	45
64	Pebax–PEG–MWCNT hybrid membranes with enhanced CO2 capture properties. Journal of Membrane Science, 2014, 460, 62-70.	4.1	223
65	Constructing facile proton-conduction pathway within sulfonated poly(ether ether ketone) membrane by incorporating poly(phosphonic acid)/silica nanotubes. Journal of Power Sources, 2014, 259, 203-212.	4.0	65
66	Enhanced proton conductivity of proton exchange membranes by incorporating sulfonated metal-organic frameworks. Journal of Power Sources, 2014, 262, 372-379.	4.0	117
67	Improved poly(3-hydroxybutyrate) production in Escherichia coli by inactivation of cytochrome bd-II oxidase or/and NDH-II dehydrogenase in low efficient respiratory chains. Journal of Biotechnology, 2014, 192, 170-176.	1.9	10
68	Efficient CO2 capture by humidified polymer electrolyte membranes with tunable water state. Energy and Environmental Science, 2014, 7, 1489.	15.6	119
69	High permeability hydrogel membranes of chitosan/poly ether-block-amide blends for CO2 separation. Journal of Membrane Science, 2014, 469, 198-208.	4.1	103
70	Zwitterionic Microcapsules as Water Reservoirs and Proton Carriers within a Nafion Membrane To Confer High Proton Conductivity under Low Humidity. ACS Applied Materials & Interfaces, 2014, 6, 5362-5366.	4.0	48
71	Enhanced CO ₂ Permeability of Membranes by Incorporating Polyzwitterion@CNT Composite Particles into Polyimide Matrix. ACS Applied Materials & Interfaces, 2014, 6, 13051-13060.	4.0	73
72	High-Performance Composite Membrane with Enriched CO ₂ -philic Groups and Improved Adhesion at the Interface. ACS Applied Materials & Interfaces, 2014, 6, 6654-6663.	4.0	61

#	Article	IF	CITATIONS
73	Facilitated transport mixed matrix membranes incorporated with amine functionalized MCM-41 for enhanced gas separation properties. Journal of Membrane Science, 2014, 465, 78-90.	4.1	196
74	Functionalized Carbon Nanotube via Distillation Precipitation Polymerization and Its Application in Nafion-Based Composite Membranes. ACS Applied Materials & Interfaces, 2014, 6, 15291-15301.	4.0	84
75	SPEEK/amine-functionalized TiO2 submicrospheres mixed matrix membranes for CO2 separation. Journal of Membrane Science, 2014, 467, 23-35.	4.1	84
76	Enhancing water retention and low-humidity proton conductivity of sulfonated poly(ether ether) Tj ETQq0 0 0 rg hydrophilicity–hydrophobicity. Journal of Power Sources, 2014, 248, 951-961.	BT /Overlo 4.0	ck 10 Tf 50 6 48
77	Bioinspired Membranes. , 2014, , 1-3.		0
78	Recent advances in the fabrication of advanced composite membranes. Journal of Materials Chemistry A, 2013, 1, 10058.	5.2	252
79	Fluorous Metal-Organic Frameworks with Enhanced Stability and High H2/CO2 Storage Capacities. Scientific Reports, 2013, 3, 3312.	1.6	136
80	High performance composite membranes with a polycarbophil calcium transition layer for pervaporation dehydration of ethanol. Journal of Membrane Science, 2013, 429, 409-417.	4.1	40
81	Embedding dopamine nanoaggregates into a poly(dimethylsiloxane) membrane to confer controlled interactions and free volume for enhanced separation performance. Journal of Materials Chemistry A, 2013, 1, 3713.	5.2	90
82	Bioadhesion-inspired polymer–inorganic nanohybrid membranes with enhanced CO2 capture properties. Journal of Materials Chemistry, 2012, 22, 19617.	6.7	57
83	Enhancement of Proton Conduction at Low Humidity by Incorporating Imidazole Microcapsules into Polymer Electrolyte Membranes. Advanced Functional Materials, 2012, 22, 4539-4546.	7.8	135
84	Enhancing the permselectivity of pervaporation membrane by constructing the active layer through alternative self-assembly and spin-coating. Journal of Membrane Science, 2012, 390-391, 218-225.	4.1	19
85	Enhanced anti-swelling property and dehumidification performance by sodium alginate–poly(vinyl) Tj ETQq1 1 211-220.	0.784314 4.1	rgBT /Overlo 47
86	Sodium alginate–gelatin polyelectrolyte complex membranes with both high water vapor permeance and high permselectivity. Journal of Membrane Science, 2011, 375, 304-312.	4.1	86