
John G Laffey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2992192/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sentiment analysis of user feedback on the HSE's Covid-19 contact tracing app. Irish Journal of Medical Science, 2022, 191, 103-112.	0.8	18
2	Awake Prone Positioning in Non-Intubated Patients With Acute Hypoxemic Respiratory Failure Due to COVID-19. Respiratory Care, 2022, 67, 102-114.	0.8	28
3	Immunomodulatory activity of β-glucan polysaccharides isolated from different species of mushroom – A potential treatment for inflammatory lung conditions. Science of the Total Environment, 2022, 809, 152177.	3.9	21
4	Validation and utility of ARDS subphenotypes identified by machine-learning models using clinical data: an observational, multicohort, retrospective analysis. Lancet Respiratory Medicine,the, 2022, 10, 367-377.	5.2	64
5	Inhaled nebulised unfractionated heparin for the treatment of hospitalised patients with COVIDâ€19: A multicentre case series of 98 patients. British Journal of Clinical Pharmacology, 2022, 88, 2802-2813.	1.1	17
6	Geoeconomic variations in epidemiology, ventilation management, and outcomes in invasively ventilated intensive care unit patients without acute respiratory distress syndrome: a pooled analysis of four observational studies. The Lancet Global Health, 2022, 10, e227-e235.	2.9	16
7	Can nebulised HepArin Reduce morTality and time to Extubation in patients with COVIDâ€19 Requiring invasive ventilation Metaâ€Trial (CHARTERâ€MT): Protocol and statistical analysis plan for an investigatorâ€initiated international metaâ€trial of prospective randomised clinical studies. British lournal of Clinical Pharmacology, 2022, 88, 3272-3287.	1.1	9
8	Acute Hypoxaemic Respiratory Failure and Acute Respiratory Distress Syndrome. , 2022, , 149-163.		2
9	Public opinion of the Irish "COVID Tracker―digital contact tracing App: A national survey. Digital Health, 2022, 8, 205520762210850.	0.9	7
10	Enhancement strategies for mesenchymal stem cells and related therapies. Stem Cell Research and Therapy, 2022, 13, 75.	2.4	16
11	High-Flow Nasal Cannula Failure Odds Is Largely Independent of Duration of Use in COVID-19. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 1240-1243.	2.5	8
12	Awake prone positioning for non-intubated patients with COVID-19-related acute hypoxaemic respiratory failure: a systematic review and meta-analysis. Lancet Respiratory Medicine,the, 2022, 10, 573-583.	5.2	73
13	Towards a biological definition of ARDS: are treatable traits the solution?. Intensive Care Medicine Experimental, 2022, 10, 8.	0.9	32
14	Optimising respiratory support for early COVID-19 pneumonia: a computational modelling study. British Journal of Anaesthesia, 2022, 128, 1052-1058.	1.5	4
15	Factors for success of awake prone positioning in patients with COVID-19-induced acute hypoxemic respiratory failure: analysis of a randomized controlled trial. Critical Care, 2022, 26, 84.	2.5	40
16	Patient characteristics, management and outcomes in a Nordic subset of the "Large observational study to understand the global impact of severe acute respiratory failure―(<scp>LUNG SAFE</scp>) study. Acta Anaesthesiologica Scandinavica, 2022, , .	0.7	2
17	Modeling Mechanical Ventilation In Silico—Potential and Pitfalls. Seminars in Respiratory and Critical Care Medicine, 2022, 43, 335-345.	0.8	2
18	Validation of at-the-bedside formulae for estimating ventilator driving pressure during airway pressure release ventilation using computer simulation. Respiratory Research, 2022, 23, 101.	1.4	0

#	Article	IF	CITATIONS
19	Peri-intubation Cardiovascular Collapse in Patients Who Are Critically Ill: Insights from the INTUBE Study. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 449-458.	2.5	46
20	Repair of acute respiratory distress syndrome by stromal cell administration (REALIST): a structured study protocol for an open-label dose-escalation phase 1 trial followed by a randomised, triple-blind, allocation concealed, placebo-controlledÂphase 2 trial. Trials, 2022, 23, 401.	0.7	3
21	Early short course of neuromuscular blocking agents in patients with COVID-19 ARDS: a propensity score analysis. Critical Care, 2022, 26, 141.	2.5	9
22	Presence of comorbidities alters management and worsens outcome of patients with acute respiratory distress syndrome: insights from the LUNG SAFE study. Annals of Intensive Care, 2022, 12, .	2.2	7
23	Insights Regarding the Berlin Definition of ARDS from Prospective Observational Studies. Seminars in Respiratory and Critical Care Medicine, 2022, 43, 379-389.	0.8	3
24	A national survey of attitudes to COVID-19 digital contact tracing in the Republic of Ireland. Irish Journal of Medical Science, 2021, 190, 863-887.	0.8	79
25	Mesenchymal Stem/Stromal Cells Therapy for Sepsis and Acute Respiratory Distress Syndrome. Seminars in Respiratory and Critical Care Medicine, 2021, 42, 020-039.	0.8	20
26	Unlocking the surge in demand for personal and protective equipment (PPE) and improvised face coverings arising from coronavirus disease (COVID-19) pandemic – Implications for efficacy, re-use and sustainable waste management. Science of the Total Environment, 2021, 752, 142259.	3.9	112
27	Toward a Compare and Contrast Framework for COVID-19 Contact Tracing Mobile Applications: A Look at Usability. , 2021, , .		4
28	Hypercapnia in the critically ill: insights from the bench to the bedside. Interface Focus, 2021, 11, 20200032.	1.5	9
29	Precision medicine in acute respiratory distress syndrome: workshop report and recommendations for future research. European Respiratory Review, 2021, 30, 200317.	3.0	34
30	Embryonic-Derived Mybâ^ Macrophages Enhance Bacterial Clearance and Improve Survival in Rat Sepsis. International Journal of Molecular Sciences, 2021, 22, 3190.	1.8	6
31	Survival in Immunocompromised Patients Ultimately Requiring Invasive Mechanical Ventilation: A Pooled Individual Patient Data Analysis. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 187-196.	2.5	29
32	Intra-vital imaging of mesenchymal stromal cell kinetics in the pulmonary vasculature during infection. Scientific Reports, 2021, 11, 5265.	1.6	31
33	Intubation Practices and Adverse Peri-intubation Events in Critically Ill Patients From 29 Countries. JAMA - Journal of the American Medical Association, 2021, 325, 1164.	3.8	232
34	Death in hospital following ICU discharge: insights from the LUNG SAFE study. Critical Care, 2021, 25, 144.	2.5	12
35	Augmenting Critical Care Patient Monitoring Using Wearable Technology: Review of Usability and Human Factors. JMIR Human Factors, 2021, 8, e16491.	1.0	6
36	An appraisal of respiratory system compliance in mechanically ventilated covid-19 patients. Critical Care, 2021, 25, 199.	2.5	21

#	Article	IF	CITATIONS
37	Best Practice Guidance for Digital Contact Tracing Apps: A Cross-disciplinary Review of the Literature. JMIR MHealth and UHealth, 2021, 9, e27753.	1.8	19
38	High risk of patient self-inflicted lung injury in COVID-19 with frequently encountered spontaneous breathing patterns: a computational modelling study. Annals of Intensive Care, 2021, 11, 109.	2.2	55
39	Defining phenotypes and treatment effect heterogeneity to inform acute respiratory distress syndrome and sepsis trials: secondary analyses of three RCTs. Efficacy and Mechanism Evaluation, 2021, 8, 1-104.	0.9	11
40	Personalized mechanical ventilation in acute respiratory distress syndrome. Critical Care, 2021, 25, 250.	2.5	97
41	β-Glucans. Encyclopedia, 2021, 1, 831-847.	2.4	15
42	Inhaled CO2 to Reduce Lung Ischemia and Reperfusion Injuries: Moving Towards Clinical Translation?. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 878-879.	2.5	1
43	Awake prone positioning for COVID-19 acute hypoxaemic respiratory failure: a randomised, controlled, multinational, open-label meta-trial. Lancet Respiratory Medicine,the, 2021, 9, 1387-1395.	5.2	259
44	Intubation Practices and Adverse Peri-intubation Events in Critically Ill Patients—Reply. JAMA - Journal of the American Medical Association, 2021, 326, 569.	3.8	0
45	INHALEd nebulised unfractionated HEParin for the treatment of hospitalised patients with COVIDâ€19 (INHALEâ€HEP): Protocol and statistical analysis plan for an investigatorâ€initiated international metatrial of randomised studies. British Journal of Clinical Pharmacology, 2021, 87, 3075-3091.	1.1	19
46	Improved diagnosis of SARS-CoV-2 by using nucleoprotein and spike protein fragment 2 in quantitative dual ELISA tests. Epidemiology and Infection, 2021, 149, e140.	1.0	9
47	Surrogate Humane Endpoints in Small Animal Models of Acute Lung Injury: A Modified Delphi Consensus Study of Researchers and Laboratory Animal Veterinarians*. Critical Care Medicine, 2021, 49, 311-323.	0.4	7
48	Emerging cellular and pharmacologic therapies for acute respiratory distress syndrome. Current Opinion in Critical Care, 2021, 27, 20-28.	1.6	7
49	Outcome of acute hypoxaemic respiratory failure: insights from the LUNG SAFE Study. European Respiratory Journal, 2021, 57, 2003317.	3.1	39
50	Understanding the impact of the lung microenvironment to enhance the therapeutic potential of mesenchymal stromal cells for acute respiratory distress syndrome. European Respiratory Journal, 2021, 58, 2100986.	3.1	1
51	Repair of acute respiratory distress syndrome by stromal cell administration (REALIST) trial: A phase 1 trial. EClinicalMedicine, 2021, 41, 101167.	3.2	22
52	The Inflammatory Lung Microenvironment; a Key Mediator in MSC Licensing. Cells, 2021, 10, 2982.	1.8	12
53	Assessment of 28-Day In-Hospital Mortality in Mechanically Ventilated Patients With Coronavirus Disease 2019: An International Cohort Study. , 2021, 3, e0567.		4
54	Fresh and Cryopreserved Human Umbilical-Cord-Derived Mesenchymal Stromal Cells Attenuate Injury and Enhance Resolution and Repair following Ventilation-Induced Lung Injury. International Journal of Molecular Sciences, 2021, 22, 12842.	1.8	9

#	Article	IF	CITATIONS
55	Prone positioning might reduce the need for intubation in people with severe COVID-19 – Authors' reply. Lancet Respiratory Medicine,the, 2021, 9, e111.	5.2	5
56	Mesenchymal stem/stromal cell-based therapies for severe viral pneumonia: therapeutic potential and challenges. Intensive Care Medicine Experimental, 2021, 9, 61.	0.9	9
57	Dangers of hyperoxia. Critical Care, 2021, 25, 440.	2.5	110
58	Nebulized Mesenchymal Stem Cell Derived Conditioned Medium Retains Antibacterial Properties Against Clinical Pathogen Isolates. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2020, 33, 140-152.	0.7	28
59	Human Umbilical Cord Mesenchymal Stromal Cells Attenuate Systemic Sepsis in Part by Enhancing Peritoneal Macrophage Bacterial Killing <i>via</i> Heme Oxygenase-1 Induction in Rats. Anesthesiology, 2020, 132, 140-154.	1.3	16
60	Accuracy of pediatric cricothyroid membrane identification by digital palpation and implications for emergency front of neck access. Paediatric Anaesthesia, 2020, 30, 69-77.	0.6	11
61	Updated guidance on the management of COVID-19: from an American Thoracic Society/European Respiratory Society coordinated International Task Force (29 July 2020). European Respiratory Review, 2020, 29, 200287.	3.0	82
62	In Silico Modeling of Coronavirus Disease 2019 Acute Respiratory Distress Syndrome: Pathophysiologic Insights and Potential Management Implications. , 2020, 2, e0202.		14
63	Machine Learning Classifier Models: The Future for Acute Respiratory Distress Syndrome Phenotyping?. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 919-920.	2.5	8
64	Supporting more than one patient with a single mechanical ventilator: useful last resort or unjustifiable risk?. British Journal of Anaesthesia, 2020, 125, 247-250.	1.5	15
65	Emerging pharmacological therapies for ARDS: COVID-19 and beyond. Intensive Care Medicine, 2020, 46, 2265-2283.	3.9	52
66	Umbilical Cord-Derived CD362+ Mesenchymal Stromal Cells Attenuate Polymicrobial Sepsis Induced by Caecal Ligation and Puncture. International Journal of Molecular Sciences, 2020, 21, 8270.	1.8	10
67	Awake prone positioning of hypoxaemic patients with COVID-19: protocol for a randomised controlled open-label superiority meta-trial. BMJ Open, 2020, 10, e041520.	0.8	14
68	Nebulised heparin as a treatment for COVID-19: scientific rationale and a call for randomised evidence. Critical Care, 2020, 24, 454.	2.5	81
69	A minimal common outcome measure set for COVID-19 clinical research. Lancet Infectious Diseases, The, 2020, 20, e192-e197.	4.6	1,165
70	Meta-trial of awake prone positioning with nasal high flow therapy: Invitation to join a pandemic collaborative research effort. Journal of Critical Care, 2020, 60, 140-142.	1.0	11
71	Pathophysiology of COVID-19-associated acute respiratory distress syndrome: a multicentre prospective observational study. Lancet Respiratory Medicine,the, 2020, 8, 1201-1208.	5.2	516
72	The role of cells and their products in respiratory drug delivery: the past, present, and future. Expert Opinion on Drug Delivery, 2020, 17, 1689-1702.	2.4	8

#	Article	IF	CITATIONS
73	Compliance Phenotypes in Early Acute Respiratory Distress Syndrome before the COVID-19 Pandemic. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1244-1252.	2.5	85
74	β-Glucan Metabolic and Immunomodulatory Properties and Potential for Clinical Application. Journal of Fungi (Basel, Switzerland), 2020, 6, 356.	1.5	87
75	β-Glucan extracts from the same edible shiitake mushroom Lentinus edodes produce differential in-vitro immunomodulatory and pulmonary cytoprotective effects — Implications for coronavirus disease (COVID-19) immunotherapies. Science of the Total Environment, 2020, 732, 139330.	3.9	105
76	The interaction between arterial oxygenation and carbon dioxide and hospital mortality following out of hospital cardiac arrest: a cohort study. Critical Care, 2020, 24, 336.	2.5	18
77	Utility of Driving Pressure and Mechanical Power to Guide Protective Ventilator Settings in Two Cohorts of Adult and Pediatric Patients With Acute Respiratory Distress Syndrome: A Computational Investigation. Critical Care Medicine, 2020, 48, 1001-1008.	0.4	24
78	Patterns and Impact of Arterial CO2 Management in Patients With Acute Respiratory Distress Syndrome. Chest, 2020, 158, 1967-1982.	0.4	19
79	Prone positioning in COVID-19 acute respiratory failure: just do it?. British Journal of Anaesthesia, 2020, 125, 440-443.	1.5	24
80	Safety of Triple Neuroprotection with Targeted Hypothermia, Controlled Induced Hypertension, and Barbiturate Infusion during Emergency Carotid Endarterectomy for Acute Stroke after Missing the 24ÂHours Window Opportunity. Annals of Vascular Surgery, 2020, 69, 163-173.	0.4	2
81	Umbilical cord-derived CD362+ mesenchymal stromal cells for E. coli pneumonia: impact of dose regimen, passage, cryopreservation, and antibiotic therapy. Stem Cell Research and Therapy, 2020, 11, 116.	2.4	24
82	Challenges and solutions for addressing critical shortage of supply chain for personal and protective equipment (PPE) arising from Coronavirus disease (COVID19) pandemic – Case study from the Republic of Ireland. Science of the Total Environment, 2020, 725, 138532.	3.9	322
83	Patterns of Use of Adjunctive Therapies inÂPatients With Early Moderate to SevereÂARDS. Chest, 2020, 157, 1497-1505.	0.4	35
84	Is carbon dioxide harmful or helpful in ARDS?. , 2020, , 121-129.e1.		0
85	Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome: insights from the LUNG SAFE study. Critical Care, 2020, 24, 125.	2.5	29
86	Missed or delayed diagnosis of ARDS: a common and serious problem. Intensive Care Medicine, 2020, 46, 1180-1183.	3.9	60
87	Acute respiratory distress syndrome subphenotypes and therapy responsive traits among preclinical models: protocol for a systematic review and meta-analysis. Respiratory Research, 2020, 21, 81.	1.4	12
88	The identification of needs and development of best practice guidance for the psychological support of frontline healthcare workers during and after COVID-19: A protocol for the FLoWS project. HRB Open Research, 2020, 3, 54.	0.3	1
89	Towards a Taxonomy for Evaluating Societal Concerns of Contact Tracing Apps. , 2020, , .		5
90	Current therapies for gastro-oesophageal reflux in the setting of chronic lung disease: state of the art review. ERJ Open Research, 2020, 6, 00190-2019.	1.1	15

#	Article	IF	CITATIONS
91	In vitro characterization of PrismaLung+: a novel ECCO2R device. Intensive Care Medicine Experimental, 2020, 8, 14.	0.9	12
92	The importance of discovery science in the development of therapies for the critically ill. Intensive Care Medicine Experimental, 2020, 8, 17.	0.9	6
93	Role of the adaptive immune response in sepsis. Intensive Care Medicine Experimental, 2020, 8, 20.	0.9	58
94	Cytokine pre-activation of cryopreserved xenogeneic-free human mesenchymal stromal cells enhances resolution and repair following ventilator-induced lung injury potentially via a KGF-dependent mechanism. Intensive Care Medicine Experimental, 2020, 8, 8.	0.9	18
95	Novel Interface Designs for Patient Monitoring Applications in Critical Care Medicine: Human Factors Review. JMIR Human Factors, 2020, 7, e15052.	1.0	9
96	The identification of needs and development of best practice guidance for the psychological support of frontline healthcare workers during and after COVID-19: A protocol for the FLoWS project. HRB Open Research, 2020, 3, 54.	0.3	2
97	Spontaneous Breathing in Early Acute Respiratory Distress Syndrome: Insights From the Large Observational Study to UNderstand the Global Impact of Severe Acute Respiratory FailurE Study*. Critical Care Medicine, 2019, 47, 229-238.	0.4	68
98	Demographics, management and outcome of females and males with acute respiratory distress syndrome in the LUNG SAFE prospective cohort study. European Respiratory Journal, 2019, 54, 1900609.	3.1	49
99	Why translational research matters: proceedings of the third international symposium on acute lung injury translational research (INSPIRES III). Intensive Care Medicine Experimental, 2019, 7, 40.	0.9	3
100	Modulating the distribution and fate of exogenously delivered MSCs to enhance therapeutic potential: knowns and unknowns. Intensive Care Medicine Experimental, 2019, 7, 41.	0.9	35
101	Overexpression of IL-10 Enhances the Efficacy of Human Umbilical-Cord-Derived Mesenchymal Stromal Cells in E. coli Pneumosepsis. Journal of Clinical Medicine, 2019, 8, 847.	1.0	33
102	The worldwide assessment of separation of patients from ventilatory assistance (WEAN SAFE) ERS Clinical Research Collaboration. European Respiratory Journal, 2019, 53, 1802228.	3.1	5
103	Is Activity Tracker–Measured Ambulation an Accurate and Reliable Determinant of Postoperative Quality of Recovery? A Prospective Cohort Validation Study. Anesthesia and Analgesia, 2019, 129, 1144-1152.	1.1	13
104	Declining Mortality in Patients With Acute Respiratory Distress Syndrome: An Analysis of the Acute Respiratory Distress Syndrome Network Trials. Critical Care Medicine, 2019, 47, 315-323.	0.4	39
105	Impact of Early Acute Kidney Injury on Management and Outcome in Patients With Acute Respiratory Distress Syndrome: A Secondary Analysis of a Multicenter Observational Study*. Critical Care Medicine, 2019, 47, 1216-1225.	0.4	36
106	Extracellular Vesicles from Interferon-γ–primed Human Umbilical Cord Mesenchymal Stromal Cells Reduce <i>Escherichia coli</i> –induced Acute Lung Injury in Rats. Anesthesiology, 2019, 130, 778-790.	1.3	73
107	Sepsis: Therapeutic Potential of Immunosuppression versus Immunostimulation. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 128-130.	1.4	2
108	Identification and Modulation of Microenvironment Is Crucial for Effective Mesenchymal Stromal Cell Therapy in Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1214-1224.	2.5	92

#	Article	IF	CITATIONS
109	The Safety and Efficiency of Addressing ARDS Using Stem Cell Therapies in Clinical Trials. , 2019, , 219-238.		4
110	Resolved versus confirmed ARDS after 24Âh: insights from the LUNG SAFE study. Intensive Care Medicine, 2018, 44, 564-577.	3.9	48
111	Research in Extracorporeal Life Support. Chest, 2018, 153, 788-791.	0.4	28
112	The Randomized Educational Acute Respiratory Distress Syndrome Diagnosis Study: A Trial to Improve the Radiographic Diagnosis of Acute Respiratory Distress Syndrome*. Critical Care Medicine, 2018, 46, 743-748.	0.4	34
113	Mesenchymal stem cells enhance NOX2-dependent reactive oxygen species production and bacterial killing in macrophages during sepsis. European Respiratory Journal, 2018, 51, 1702021.	3.1	53
114	Lessons to learn from epidemiologic studies in ARDS. Current Opinion in Critical Care, 2018, 24, 41-48.	1.6	59
115	Using Activity Trackers to Quantify Postpartum Ambulation. Anesthesiology, 2018, 128, 598-608.	1.3	18
116	Cell therapy in acute respiratory distress syndrome. Journal of Thoracic Disease, 2018, 10, 5607-5620.	0.6	46
117	Syndecan-2–positive, Bone Marrow–derived Human Mesenchymal Stromal Cells Attenuate Bacterial-induced Acute Lung Injury and Enhance Resolution of Ventilator-induced Lung Injury in Rats. Anesthesiology, 2018, 129, 502-516.	1.3	45
118	Human Mesenchymal Stem Cell Secretome from Bone Marrow or Adipose-Derived Tissue Sources for Treatment of Hypoxia-Induced Pulmonary Epithelial Injury. International Journal of Molecular Sciences, 2018, 19, 2996.	1.8	35
119	Sepsis Therapies: Insights from Population Health to Cellular Therapies and Genomic Medicine. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 1570-1572.	2.5	2
120	Identifying associations between diabetes and acute respiratory distress syndrome in patients with acute hypoxemic respiratory failure: an analysis of the LUNG SAFE database. Critical Care, 2018, 22, 268.	2.5	28
121	Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial. Lancet Respiratory Medicine,the, 2018, 6, 691-698.	5.2	455
122	Negative trials in critical care: why most research is probably wrong. Lancet Respiratory Medicine,the, 2018, 6, 659-660.	5.2	61
123	Immunocompromised patients with acute respiratory distress syndrome: secondary analysis of the LUNG SAFE database. Critical Care, 2018, 22, 157.	2.5	84
124	A qualitative synthesis of gastro-oesophageal reflux in bronchiectasis: Current understanding and future risk. Respiratory Medicine, 2018, 141, 132-143.	1.3	18
125	Epidemiology and patterns of tracheostomy practice in patients with acute respiratory distress syndrome in ICUs across 50 countries. Critical Care, 2018, 22, 195.	2.5	91
126	Simvastatin to reduce pulmonary dysfunction in patients with acute respiratory distress syndrome: the HARP-2 RCT. Efficacy and Mechanism Evaluation, 2018, 5, 1-80.	0.9	5

#	Article	IF	CITATIONS
127	F <scp>ifty</scp> Y <scp>ears of</scp> R <scp>esearch in</scp> ARDS.Insight into Acute Respiratory Distress Syndrome. From Models to Patients. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 18-28.	2.5	55
128	A comparison of videolaryngoscopes for tracheal intubation in predicted difficult airway: a feasibility study. BMC Anesthesiology, 2017, 17, 25.	0.7	8
129	Reply: "Could Noninvasive Ventilation Failure Rates Be Underestimated in the LUNG SAFE Study?―and "High-Flow Oxygen, Positive End-Expiratory Pressure, and the Berlin Definition of Acute Respiratory Distress Syndrome: Are They Mutually Exclusive?― American Journal of Respiratory and Critical Care Medicine. 2017. 196. 397-398.	2.5	0
130	Some remaining important questions after LUNG SAFE. Intensive Care Medicine, 2017, 43, 598-599.	3.9	3
131	Geo-economic variations in epidemiology, patterns of care, and outcomes in patients with acute respiratory distress syndrome: insights from the LUNG SAFE prospective cohort study. Lancet Respiratory Medicine,the, 2017, 5, 627-638.	5.2	93
132	The authors reply. Critical Care Medicine, 2017, 45, e737-e738.	0.4	0
133	Continued under-recognition of acute respiratory distress syndrome after the Berlin definition. Current Opinion in Critical Care, 2017, 23, 10-17.	1.6	20
134	Cryopreserved, Xeno-Free Human Umbilical Cord Mesenchymal Stromal Cells Reduce Lung Injury Severity and Bacterial Burden in Rodent Escherichia coli–Induced Acute Respiratory Distress Syndrome. Critical Care Medicine, 2017, 45, e202-e212.	0.4	67
135	F <scp>ifty</scp> Y <scp>ears</scp> <scp>of</scp> R <scp>esearch</scp> <scp>in</scp> ARDS.Cell-based Therapy for Acute Respiratory Distress Syndrome. Biology and Potential Therapeutic Value. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 266-273.	2.5	179
136	Statin therapy for acute respiratory distress syndrome: an individual patient data meta-analysis of randomised clinical trials. Intensive Care Medicine, 2017, 43, 663-671.	3.9	33
137	Suprascapular and Interscalene Nerve Block for Shoulder Surgery. Anesthesiology, 2017, 127, 998-1013.	1.3	113
138	Stem Cell–based Therapies for Sepsis. Anesthesiology, 2017, 127, 1017-1034.	1.3	49
139	The intensive care medicine research agenda for airways, invasive and noninvasive mechanical ventilation. Intensive Care Medicine, 2017, 43, 1352-1365.	3.9	41
140	Acute respiratory distress syndrome. BMJ: British Medical Journal, 2017, 359, j5055.	2.4	15
141	Treatment limitations in the era of ECMO. Lancet Respiratory Medicine,the, 2017, 5, 769-770.	5.2	23
142	Etiologies, diagnostic work-up and outcomes of acute respiratory distress syndrome with no common risk factor: a prospective multicenter study. Annals of Intensive Care, 2017, 7, 69.	2.2	41
143	Noninvasive Ventilation of Patients with Acute Respiratory Distress Syndrome. Insights from the LUNG SAFE Study. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 67-77.	2.5	456
144	Noninvasive mechanical ventilation in early acute respiratory distress syndrome. Polish Archives of Internal Medicine, 2017, 127, 614-620.	0.3	3

#	Article	IF	CITATIONS
145	Recent insights: mesenchymal stromal/stem cell therapy for acute respiratory distress syndrome. F1000Research, 2016, 5, 1532.	0.8	22
146	The LUNG SAFE study: a presentation of the prevalence of ARDS according to the Berlin Definition!. Critical Care, 2016, 20, 268.	2.5	59
147	Challenges with PRONE ventilation in ARDS patients: response to comments by Chertoff. Intensive Care Medicine, 2016, 42, 2124-2125.	3.9	0
148	Biotrauma and Ventilator-Induced LungÂlnjury. Chest, 2016, 150, 1109-1117.	0.4	176
149	Incidence of Acute Respiratory Distress Syndrome—Reply. JAMA - Journal of the American Medical Association, 2016, 316, 347.	3.8	14
150	Comorbidities and the risk of mortality in patients with bronchiectasis: an international multicentre cohort study. Lancet Respiratory Medicine,the, 2016, 4, 969-979.	5.2	210
151	Potentially modifiable factors contributing to outcome from acute respiratory distress syndrome: the LUNG SAFE study. Intensive Care Medicine, 2016, 42, 1865-1876.	3.9	247
152	Effects and Mechanisms by Which Hypercapnic Acidosis Inhibits Sepsis-Induced Canonical Nuclear Factor-κB Signaling in the Lung. Critical Care Medicine, 2016, 44, e207-e217.	0.4	12
153	Hypercapnic acidosis attenuates pulmonary epithelial stretch-induced injury via inhibition of the canonical NF-κB pathway. Intensive Care Medicine Experimental, 2016, 4, 8.	0.9	18
154	What's new in cell therapies in ARDS?. Intensive Care Medicine, 2016, 42, 779-782.	3.9	6
155	The ten studies that should be done in ARDS. Intensive Care Medicine, 2016, 42, 783-786.	3.9	4
156	Stem cell therapy for acute respiratory distress syndrome. Current Opinion in Critical Care, 2016, 22, 14-20.	1.6	36
157	Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA - Journal of the American Medical Association, 2016, 315, 788.	3.8	3,568
158	Hypocapnia and Hypercapnia. , 2016, , 1527-1546.e8.		6
159	Therapeutic Efficacy of Human Mesenchymal Stromal Cells in the Repair of Established Ventilator-induced Lung Injury in the Rat. Anesthesiology, 2015, 122, 363-373.	1.3	57
160	Mesenchymal stromal cells are more effective than the MSC secretome in diminishing injury and enhancing recovery following ventilator-induced lung injury. Intensive Care Medicine Experimental, 2015, 3, 29.	0.9	64
161	Human mesenchymal stromal cells decrease the severity of acute lung injury induced by E. coli in the rat. Thorax, 2015, 70, 625-635.	2.7	163
162	Future therapies for ARDS. Intensive Care Medicine, 2015, 41, 322-326.	3.9	6

#	Article	IF	CITATIONS
163	Sepsis protects the myocardium and other organs from subsequent ischaemic/reperfusion injury via a MAPK-dependent mechanism. Intensive Care Medicine Experimental, 2015, 3, 35.	0.9	22
164	Extracorporeal membrane oxygenation for blastomycosis-related severe ARDS: a new indication as a rescue therapy?. Canadian Journal of Anaesthesia, 2015, 62, 731-735.	0.7	3
165	Angiotensin-(1-7) improves oxygenation, while reducing cellular infiltrate and fibrosis in experimental Acute Respiratory Distress Syndrome. Intensive Care Medicine Experimental, 2015, 3, 44.	0.9	81
166	Permissive Hypercapnia. , 2015, , 727-742.		1
167	Mechanical Stress and the Induction of Lung Fibrosis via the Midkine Signaling Pathway. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 315-323.	2.5	93
168	Permissive hypercapnia. Current Opinion in Anaesthesiology, 2015, 28, 26-37.	0.9	46
169	Tracheostomy procedures in the intensive care unit: an international survey. Critical Care, 2015, 19, 291.	2.5	117
170	Mechanical Ventilation, Permissive Hypercapnia. , 2015, , 928-933.		0
171	Aerosol-Mediated Delivery of AAV2/6-lκBα Attenuates Lipopolysaccharide-Induced Acute Lung Injury in Rats. Human Gene Therapy, 2015, 26, 36-46.	1.4	6
172	Pulmonary overexpression of inhibitor κBα decreases the severity of ventilator-induced lung injury in a rat model. British Journal of Anaesthesia, 2014, 113, 1046-1054.	1.5	9
173	Cell-based therapies for the acute respiratory distress syndrome. Current Opinion in Critical Care, 2014, 20, 122-131.	1.6	31
174	Mesenchymal Stem Cell Trials for Pulmonary Diseases. Journal of Cellular Biochemistry, 2014, 115, 1023-1032.	1.2	73
175	Simvastatin in the Acute Respiratory Distress Syndrome. New England Journal of Medicine, 2014, 371, 1695-1703.	13.9	373
176	Acidosis in the critically ill - balancing risks and benefits to optimize outcome. Critical Care, 2014, 18, 129.	2.5	15
177	Mechanical Ventilation–associated Lung Fibrosis in Acute Respiratory Distress Syndrome. Anesthesiology, 2014, 121, 189-198.	1.3	145
178	Therapeutic Potential and Mechanisms of Action of Mesenchymal Stromal Cells for Acute Respiratory Distress Syndrome. Current Stem Cell Research and Therapy, 2014, 9, 319-329.	0.6	25
179	Inhibition of pulmonary nuclear factor kappa-B decreases the severity of acute Escherichia coli pneumonia but worsens prolonged pneumonia. Critical Care, 2013, 17, R82.	2.5	24
180	CrossTalk proposal: There is added benefit to providing permissive hypercapnia in the treatment of ARDS. Journal of Physiology, 2013, 591, 2763-2765.	1.3	22

#	Article	IF	CITATIONS
181	Cell therapy demonstrates promise for acute respiratory distress syndrome - but which cell is best?. Stem Cell Research and Therapy, 2013, 4, 29.	2.4	6
182	Predicting the Development of Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 671-672.	2.5	9
183	Rebuttal from Gerard F. Curley, John G. Laffey and Brian P. Kavanagh. Journal of Physiology, 2013, 591, 2771-2772.	1.3	1
184	Effects of Intratracheal Mesenchymal Stromal Cell Therapy during Recovery and Resolution after Ventilator-induced Lung Injury. Anesthesiology, 2013, 118, 924-932.	1.3	92
185	Mesenchymal stem cells enhance recovery and repair following ventilator-induced lung injury in the rat. Thorax, 2012, 67, 496-501.	2.7	238
186	Hypercapnia Induces Cleavage and Nuclear Localization of RelB Protein, Giving Insight into CO2 Sensing and Signaling. Journal of Biological Chemistry, 2012, 287, 14004-14011.	1.6	48
187	Ischemia–reperfusion-induced lung injury. Critical Care Medicine, 2012, 40, 688-690.	0.4	8
188	Hypercapnic acidosis attenuates ventilation-induced lung injury by a nuclear factor-κB–dependent mechanism. Critical Care Medicine, 2012, 40, 2622-2630.	0.4	77
189	Clinical review: Stem cell therapies for acute lung injury/acute respiratory distress syndrome - hope or hype?. Critical Care, 2012, 16, 205.	2.5	85
190	Hydroxymethylglutaryl-CoA reductase inhibition with simvastatin in Acute lung injury to Reduce Pulmonary dysfunction (HARP-2) trial: study protocol for a randomized controlled trial. Trials, 2012, 13, 170.	0.7	19
191	Relationship between growth of foodâ€spoilage yeast in highâ€sugar environments and sensitivity to highâ€intensity pulsed UV light irradiation. International Journal of Food Science and Technology, 2012, 47, 1925-1934.	1.3	9
192	Permissive hypercapnia $\hat{a} \in$ " role in protective lung ventilatory strategies. , 2012, , 111-120.		1
193	VEGF: Potential therapy for renal regeneration. F1000 Medicine Reports, 2012, 4, 2.	2.9	20
194	Clinical Review: Gene-based therapies for ALI/ARDS: where are we now?. Critical Care, 2011, 15, 224.	2.5	36
195	Can 'permissive' hypercapnia modulate the severity of sepsis-induced ALI/ARDS?. Critical Care, 2011, 15, 212.	2.5	40
196	Casual bystander or active participant? New clues about adiponectin and traumatic injury*. Critical Care Medicine, 2011, 39, 2007-2008.	0.4	0
197	Hypocapnia and the injured brain: Evidence for harm. Critical Care Medicine, 2011, 39, 229-230.	0.4	9
198	Placebo blocks in local anaesthesia studies: the need for balance. Anaesthesia, 2011, 66, 390-392.	1.8	3

#	Article	IF	CITATIONS
199	Overexpression of pulmonary extracellular superoxide dismutase attenuates endotoxin-induced acute lung injury. Intensive Care Medicine, 2011, 37, 1680-7.	3.9	20
200	Evolution of the Inflammatory and Fibroproliferative Responses during Resolution and Repair after Ventilator-induced Lung Injury in the Rat. Anesthesiology, 2011, 115, 1022-1032.	1.3	36
201	Hypocapnia and the injured brain: More harm than benefit. Critical Care Medicine, 2010, 38, 1348-1359.	0.4	233
202	Hypercapnia and Acidosis in Sepsis. Anesthesiology, 2010, 112, 462-472.	1.3	83
203	Ipsilateral Transversus Abdominis Plane Block Provides Effective Analgesia After Appendectomy in Children. Anesthesia and Analgesia, 2010, 111, 998-1003.	1.1	110
204	ls Permissive Hypercapnia Helpful or Harmful?. , 2010, , 100-105.		0
205	Bench-to-bedside review: Carbon dioxide. Critical Care, 2010, 14, 220.	2.5	131
206	Hypercapnic acidosis attenuates pulmonary epithelial wound repair by an NF-ÂB dependent mechanism. Thorax, 2009, 64, 976-982.	2.7	104
207	A comparison of the Glidescope®, Pentax AWS®, and Macintosh laryngoscopes when used by novice personnel: a manikin study. Canadian Journal of Anaesthesia, 2009, 56, 802-811.	0.7	56
208	Role of potassium and calcium channels in sevoflurane-mediated vasodilation in the foeto-placental circulation. BMC Anesthesiology, 2009, 9, 4.	0.7	1
209	Comparison of the Airtraq® and Truview®laryngoscopes to the Macintosh laryngoscope for use by Advanced Paramedics in easy and simulated difficult intubation in manikins. BMC Emergency Medicine, 2009, 9, 2.	0.7	40
210	Comparison of the Glidescope® and Pentax AWS®laryngoscopes to the Macintosh laryngoscope for use by Advanced Paramedics in easy and simulated difficult intubation. BMC Emergency Medicine, 2009, 9, 9.	0.7	55
211	Effects and mechanisms of action of sildenafil citrate in human chorionic arteries. Reproductive Biology and Endocrinology, 2009, 7, 34.	1.4	30
212	Optimized Aerosol Delivery to a Mechanically Ventilated Rodent. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2009, 22, 323-332.	0.7	35
213	Permissive hypercapnia — role in protective lung ventilatory strategies. , 2009, , 241-250.		1
214	Hypercapnic acidosis attenuates shock and lung injury in early and prolonged systemic sepsis. Critical Care Medicine, 2009, 37, 2412-2420.	0.4	76
215	Infection-induced lung injury is worsened after renal buffering of hypercapnic acidosis. Critical Care Medicine, 2009, 37, 2953-2961.	0.4	46
216	Differential Effects of Buffered Hypercapnia <i>versus</i> Â Hypercapnic Acidosis on Shock and Lung Injury Induced by Systemic Sepsis. Anesthesiology, 2009, 111, 1317-1326.	1.3	49

#	Article	IF	CITATIONS
217	Fluid Dynamics of Gas Exchange in High-Frequency Oscillatory Ventilation: InÂVitro Investigations in Idealized and Anatomically Realistic Airway Bifurcation Models. Annals of Biomedical Engineering, 2008, 36, 1856-1869.	1.3	26
218	Determination of the efficacy and side-effect profile of lower doses of intrathecal morphine in patients undergoing total knee arthroplasty. BMC Anesthesiology, 2008, 8, 5.	0.7	17
219	Hypertonic saline reduces inflammation and enhances the resolution of oleic acid induced acute lung injury. BMC Pulmonary Medicine, 2008, 8, 9.	0.8	20
220	The Transversus Abdominis Plane Block Provides Effective Postoperative Analgesia in Patients Undergoing Total Abdominal Hysterectomy. Anesthesia and Analgesia, 2008, 107, 2056-2060.	1.1	432
221	The Analgesic Efficacy of Transversus Abdominis Plane Block After Cesarean Delivery: A Randomized Controlled Trial. Anesthesia and Analgesia, 2008, 106, 186-191.	1.1	585
222	Hypercapnic acidosis attenuates severe acute bacterial pneumonia-induced lung injury by a neutrophil-independent mechanism*. Critical Care Medicine, 2008, 36, 3135-3144.	0.4	69
223	Subcostal Transversus Abdominis Plane Block Under Ultrasound Guidance. Anesthesia and Analgesia, 2008, 106, 675.	1.1	8
224	Sevoflurane and the Feto-Placental Vasculature: The Role of Nitric Oxide and Vasoactive Eicosanoids. Anesthesia and Analgesia, 2008, 107, 171-177.	1.1	4
225	Sustained hypercapnic acidosis during pulmonary infection increases bacterial load and worsens lung injury*. Critical Care Medicine, 2008, 36, 2128-2135.	0.4	138
226	Hypercapnic Acidosis Attenuates Lung Injury Induced by Established Bacterial Pneumonia. Anesthesiology, 2008, 109, 837-848.	1.3	70
227	Carbon Monoxide. Anesthesiology, 2008, 108, 977-978.	1.3	4
228	Implementing scientific advances into clinical practice in critical care—New challenges and new insights*. Critical Care Medicine, 2007, 35, 1779-1780.	0.4	1
229	Permissive hypercapnia: Balancing risks and benefits in the peripheral microcirculation*. Critical Care Medicine, 2007, 35, 2229-2231.	0.4	9
230	Transversus Abdominis Plane Block. Anesthesia and Analgesia, 2007, 105, 883.	1.1	54
231	Endotracheal Intubation in Patients with Cervical Spine Immobilization. Anesthesiology, 2007, 107, 53-59.	1.3	184
232	Transversus Abdominis Plane Block. Regional Anesthesia and Pain Medicine, 2007, 32, 399-404.	1.1	13
233	The Analgesic Efficacy of Transversus Abdominis Plane Block After Abdominal Surgery: A Prospective Randomized Controlled Trial. Anesthesia and Analgesia, 2007, 104, 193-197.	1.1	746
234	Transversus Abdominis Plane Block: A Cadaveric and Radiological Evaluation. Regional Anesthesia and Pain Medicine, 2007, 32, 399-404.	1.1	241

#	Article	IF	CITATIONS
235	Permissive hypercapnia in protective lung ventilatory strategies. Paediatrics and Child Health (United) Tj ETQq1	1 0,784314	rgBT /Over
236	The Transversus Abdominis Plane Block. Anesthesia and Analgesia, 2007, 105, 282-283.	1.1	15
237	Tracheal intubation by inexperienced medical residents using the Airtraq and Macintosh laryngoscopes—a manikin study. American Journal of Emergency Medicine, 2006, 24, 769-774.	0.7	76
238	Sildenafil for Pulmonary Hypertension in Pregnancy?. Anesthesiology, 2006, 104, 382-382.	1.3	9
239	Permissive hypercapnia — role in protective lung ventilatory strategies. , 2006, , 197-206.		0
240	Hypercapnic acidosis does not modulate the severity of bacterial pneumonia–induced lung injury. Critical Care Medicine, 2005, 33, 2606-2612.	0.4	74
241	Permissive hypercapnia: role in protective lung ventilatory strategies. Current Opinion in Critical Care, 2005, 11, 56-62.	1.6	66
242	Maternal Brain Death and Somatic Support. Neurocritical Care, 2005, 3, 099-106.	1.2	19
243	Maternal brain death — an Irish perspective. Irish Journal of Medical Science, 2005, 174, 55-59.	0.8	10
244	Therapeutic Hypercapnia Is Not Protective in the in vivo Surfactant-Depleted Rabbit Lung. Pediatric Research, 2004, 55, 42-49.	1.1	37
245	Hypercapnic Acidosis Attenuates Endotoxin-induced Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 46-56.	2.5	201
246	Permissive hypercapnia — role in protective lung ventilatory strategies. Intensive Care Medicine, 2004, 30, 347-356.	3.9	228
247	Maternal brain death: medical, ethical and legal issues. Intensive Care Medicine, 2004, 30, 1484-1486.	3.9	28
248	Bench-to-bedside review: Permissive hypercapnia. Critical Care, 2004, 9, 51.	2.5	100
249	CO2 and Lung Mechanical or Gas Exchange Function: The authors reply. Critical Care Medicine, 2004, 32, 1240-1241.	0.4	0
250	New strategies to control the inflammatory response in cardiac surgery. Current Opinion in Anaesthesiology, 2004, 17, 35-48.	0.9	16
251	Perioperative control of CO2. Canadian Journal of Anaesthesia, 2003, 50, R45-R50.	0.7	2
252	Effects of Therapeutic Hypercapnia on Mesenteric Ischemia–Reperfusion Injury. American Journal of Respiratory and Critical Care Medicine, 2003, 168, 1383-1390.	2.5	89

#	Article	IF	CITATIONS
253	Carbon dioxide attenuates pulmonary impairment resulting from hyperventilation*. Critical Care Medicine, 2003, 31, 2634-2640.	0.4	96
254	Hypocapnia. New England Journal of Medicine, 2002, 347, 43-53.	13.9	382
255	The Systemic Inflammatory Response to Cardiac Surgery. Anesthesiology, 2002, 97, 215-252.	1.3	709
256	The Effects of Intracuff Lidocaine on Endotracheal-Tube-Induced Emergence Phenomena After General Anesthesia. Anesthesia and Analgesia, 2000, 91, 201-205.	1.1	50
257	The Effects of Intracuff Lidocaine on Endotracheal-Tube-Induced Emergence Phenomena After General Anesthesia. Anesthesia and Analgesia, 2000, 91, 201-205.	1.1	89
258	Postoperative neurologic deficit despite normal cerebral oximetry during carotid endarterectomy. Journal of Clinical Anesthesia, 2000, 12, 573-574.	0.7	3
259	Carbon dioxide and the critically ill—too little of a good thing?. Lancet, The, 1999, 354, 1283-1286.	6.3	288
260	Mechanical Ventilation in the Critically III Patient. Seminars in Respiratory and Critical Care Medicine, 0, , .	0.8	0