
Huijun Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/299073/publications.pdf Version: 2024-02-01

ΗΠΠΗΝ ΥΠ

#	Article	IF	CITATIONS
1	Research status of laser cladding on titanium and its alloys: A review. Materials & Design, 2014, 58, 412-425.	5.1	451
2	Review of the biocompatibility of micro-arc oxidation coated titanium alloys. Materials and Design, 2015, 85, 640-652.	7.0	271
3	Research and development status of laser cladding on magnesium alloys: A review. Optics and Lasers in Engineering, 2017, 93, 195-210.	3.8	215
4	Biological properties of calcium phosphate biomaterials for bone repair: a review. RSC Advances, 2018, 8, 2015-2033.	3.6	134
5	Effect of process parameters on the microstructure evolution and wear property of the laser cladding coatings on Ti-6Al-4V alloy. Journal of Alloys and Compounds, 2017, 692, 989-996.	5.5	131
6	Laser surface alloying on aluminum and its alloys: A review. Optics and Lasers in Engineering, 2018, 100, 23-37.	3.8	125
7	Microstructures and wear properties of laser cladding Co-based composite coatings on Ti–6Al–4V. Materials & Design, 2015, 80, 174-181.	5.1	114
8	Research status of laser additive manufacturing for metal: a review. Journal of Materials Research and Technology, 2021, 15, 855-884.	5.8	110
9	Microstructures and properties of TiN reinforced Co-based composite coatings modified with Y2O3 by laser cladding on Ti–6Al–4V alloy. Journal of Alloys and Compounds, 2015, 650, 178-184.	5.5	98
10	Microstructure and wear property of the Ti 5 Si 3 /TiC reinforced Co-based coatings fabricated by laser cladding on Ti-6Al-4V. Optics and Laser Technology, 2017, 92, 156-162.	4.6	89
11	Research status of magnesium alloys by micro-arc oxidation: a review. Surface Engineering, 2017, 33, 731-738.	2.2	70
12	Microstructure and properties of Ti-Al coating and Ti-Al-Si system coatings on Ti-6Al-4V fabricated by laser surface alloying. Surface and Coatings Technology, 2017, 309, 805-813.	4.8	68
13	Chitosan composite scaffolds for articular cartilage defect repair: a review. RSC Advances, 2018, 8, 3736-3749.	3.6	62
14	Degradable magnesium-based alloys for biomedical applications: The role of critical alloying elements. Journal of Biomaterials Applications, 2019, 33, 1348-1372.	2.4	61
15	Microstructure and property of composite coatings on titanium alloy deposited by laser cladding with Co42+TiN mixed powders. Journal of Alloys and Compounds, 2016, 686, 74-81.	5.5	57
16	Microstructure and high-temperature oxidation resistance of Ti-Al-Nb coatings on a Ti-6Al-4V alloy fabricated by laser surface alloying. Surface and Coatings Technology, 2018, 344, 479-488.	4.8	53
17	Structure and in vitro bioactivity of ceramic coatings on magnesium alloys by microarc oxidation. Applied Surface Science, 2016, 388, 114-119.	6.1	39
18	Controlled sulfidation towards achieving core-shell 1D-NiMoO4 @ 2D-NiMoS4 architecture for high-performance asymmetric supercapacitor. Journal of Alloys and Compounds, 2019, 804, 27-34.	5.5	39

Нитли Уи

#	Article	IF	CITATIONS
19	High-temperature oxidation behavior of Ni-based superalloys with Nb and Y and the interface characteristics of oxidation scales. Surface and Interface Analysis, 2015, 47, 362-370.	1.8	33
20	Fabrication of Co-Based Coatings on Titanium Alloy by Laser Cladding with CeO ₂ Addition. Materials and Manufacturing Processes, 2016, 31, 1461-1467.	4.7	30
21	In-situ TiB2-TiC reinforced Fe-Al composite coating on 6061 aluminum alloy by laser surface modification. Journal of Materials Processing Technology, 2021, 294, 117107.	6.3	24
22	Enhanced corrosion resistance of magnesium alloy by plasma electrolytic oxidation plus hydrothermal treatment. Surface and Coatings Technology, 2021, 424, 127662.	4.8	22
23	Mixed-valent MnSiO3/C nanocomposite for high-performance asymmetric supercapacitor. Journal of Colloid and Interface Science, 2019, 556, 239-248.	9.4	21
24	Preparation and characterization of composite coating on Mg-1.74Zn-0.55Ca alloy by micro-arc oxidation combined with sol-gel method. Materials Letters, 2019, 255, 126578.	2.6	21
25	Formation of calcium phosphate coating on Mg-Zn-Ca alloy by micro-arc oxidation technique. Materials Letters, 2016, 164, 575-578.	2.6	20
26	Graphene–sulfur–Ni(OH)2 sandwich foam composites as free-standing cathodes for high-performance Li–S batteries. International Journal of Hydrogen Energy, 2019, 44, 30478-30485.	7.1	20
27	Physical Properties and Formation Mechanism of Copper/Glass Modified Laser Nanocrystals-Amorphous Reinforced Coatings. Journal of Physical Chemistry C, 2013, 117, 4568-4573.	3.1	19
28	Preparation and microstructure of MAO/CS composite coatings on Mg alloy. Materials Letters, 2020, 271, 127729.	2.6	19
29	Ag-containing antibacterial self-healing micro-arc oxidation coatings on Mg–Zn–Sr alloys. Surface Engineering, 2021, 37, 926-941.	2.2	19
30	Influence of silicon on growth mechanism of micro-arc oxidation coating on cast Al–Si alloy. Royal Society Open Science, 2018, 5, 172428.	2.4	18
31	The influence of Nb on hot corrosion behavior of Ni-based superalloy at 800 °C in a mixture of Na ₂ SO ₄ –NaCl. Journal of Materials Research, 2014, 29, 2596-2603.	2.6	17
32	Fabrication of Ni-Based Superalloys Containing Nb and Their High Temperature Oxidation Behaviors. Materials and Manufacturing Processes, 2015, 30, 1364-1369.	4.7	16
33	Influence of Nb and Y on Hot Corrosion Behavior of Ni–Cr-based Superalloys. Materials and Manufacturing Processes, 2015, 30, 677-684.	4.7	15
34	Preparation of Si-containing oxide coating and biomimetic apatite induction on magnesium alloy. Applied Surface Science, 2016, 388, 148-154.	6.1	15
35	Effect of the second-step voltages on the structural and corrosion properties of silicon–calcium–phosphate (Si–CaP) coatings on Mg–Zn–Ca alloy. Royal Society Open Science, 2018, 172410.	52.4	14
36	Improving the corrosion resistance of micro-arc oxidation coated Mg–Zn–Ca alloy. RSC Advances, 2020, 10, 8244-8254.	3.6	14

Нитјим Үи

#	Article	IF	CITATIONS
37	Influence of Al2O3–Y2O3 and Ce–Al–Ni amorphous alloy on physical properties of laser synthetic composite coatings on titanium alloys. Surface and Coatings Technology, 2014, 247, 55-60.	4.8	13
38	Effect of Na2WO4 on Growth Process and Corrosion Resistance of Micro-arc Oxidation Coatings on 2A12 Aluminum Alloys in CH3COONa Electrolyte. Journal of Materials Engineering and Performance, 2016, 25, 297-303.	2.5	13
39	Bioactive MAO/CS composite coatings on Mg-Zn-Ca alloy for orthopedic applications. Progress in Organic Coatings, 2021, 152, 106112.	3.9	13
40	In situ formed TiB2/TiC complex structure in laser-alloyed coatings with improved wear property. Ceramics International, 2022, 48, 7056-7062.	4.8	13
41	Layer by layer assembled chitosan (TiO2)-heparin composite coatings on MAO-coated Mg alloys. Materials Letters, 2020, 281, 128640.	2.6	11
42	Microstructure and wear resistance of composite coating by laser cladding Ni60A/B4C pre-placed powders on Ti-6Al-4V substrate. Science and Engineering of Composite Materials, 2017, 24, 541-546.	1.4	10
43	DEVELOPMENT OF LASER CLADDING WEAR-RESISTANT COATING ON TITANIUM ALLOYS. Surface Review and Letters, 2006, 13, 645-654.	1.1	8
44	Laser Cladding Induced Spherical Graphitic Phases by Super-Assembly of Graphene-Like Microstructures and the Antifriction Behavior. ACS Central Science, 2021, 7, 318-326.	11.3	8
45	Effect of current density on the microstructure and corrosion resistance of microarc oxidized ZK60 magnesium alloy. Biointerphases, 2014, 9, 031009.	1.6	7
46	MICRO-STRUCTURES OF HARD COATINGS DEPOSITED ON TITANIUM ALLOYS BY LASER ALLOYING TECHNIQUE. Surface Review and Letters, 2013, 20, 1350007.	1.1	6
47	Microstructure and mechanical behavior of the laser synthesized composites modified by micro/nano scale rare earth oxides. Journal of Alloys and Compounds, 2022, 895, 162641.	5.5	6
48	Corrosion behaviour of micro-arc oxidation coatings on Mg–2Sr prepared in poly(ethylene) Tj ETQq0 0 0 rgBT /0	Dyerlock I	.0 ₅ Tf 50 302
49	Laser alloying with Fe–B ₄ C–Ti on AA6061 for improved wear resistance. Surface Engineering, 2021, 37, 1503-1513.	2.2	3
50	MECHANICAL PROPERTIES AND HIGH TEMPERATURE OXIDATION BEHAVIOR OF Ti–Al COATING REINFORCED BY NITRIDES ON Ti–6Al–4V ALLOY. Surface Review and Letters, 2016, 23, 1650031.	1.1	2
51	Microstructure characteristics of laser alloying composite coatings in nitrogen protective atmosphere. Science and Engineering of Composite Materials, 2013, .	1.4	1
52	WEAR PROPERTIES AND CHARACTERIZATION OF LASER-DEPOSITED NI-BASE COMPOSITES ON 304 STAINLESS STEEL. Surface Review and Letters, 2020, 27, 1950219.	1.1	1
53	The Reliability Design of Switch Chip Based on THENA Process Stimulation System. Journal of Physics: Conference Series, 2020, 1650, 032107.	0.4	0
54	Influence of temperature on the soldering process of CLCC-3 package components using AuSn20 solder. AIP Advances, 2020, 10, 055105.	1.3	0

#	Article	IF	CITATIONS
55	Research status of laser cladding material system on titanium alloy. Journal of Physics: Conference Series, 2022, 2256, 012021.	0.4	0