Laura-Isobel McCall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2990714/publications.pdf

Version: 2024-02-01

42 papers

3,216 citations

411340 20 h-index 41 g-index

52 all docs 52 docs citations

times ranked

52

6112 citing authors

#	Article	IF	CITATIONS
1	Enabling Quantitative Analysis of Surface Small Molecules for Exposomics and Behavioral Studies. Journal of the American Society for Mass Spectrometry, 2022, 33, 412-419.	1.2	3
2	Chemical Cartography Approaches to Study Trypanosomatid Infection. Journal of Visualized Experiments, 2022, , .	0.2	2
3	Identification of Leucinostatins from <i>Ophiocordyceps</i> sp. as Antiparasitic Agents against <i>Trypanosoma cruzi</i> ACS Omega, 2022, 7, 7675-7682.	1.6	3
4	Molecular networking in infectious disease models. Methods in Enzymology, 2022, 663, 341-375.	0.4	1
5	Environmental structure impacts microbial composition and secondary metabolism. ISME Communications, 2022, 2, .	1.7	19
6	Spatial Metabolomics Reveals Localized Impact of Influenza Virus Infection on the Lung Tissue Metabolome. MSystems, 2022, 7, .	1.7	6
7	Quo vadis? Central Rules of Pathogen and Disease Tropism. Frontiers in Cellular and Infection Microbiology, 2021, 11, 640987.	1.8	6
8	Tryp-ing Up Metabolism: Role of Metabolic Adaptations in Kinetoplastid Disease Pathogenesis. Infection and Immunity, 2021, 89, .	1.0	9
9	Alterations to the Cardiac Metabolome Induced by Chronic <i>T. cruzi</i> Infection Relate to the Degree of Cardiac Pathology. ACS Infectious Diseases, 2021, 7, 1638-1649.	1.8	17
10	Dysregulation of Glycerophosphocholines in the Cutaneous Lesion Caused by Leishmania major in Experimental Murine Models. Pathogens, 2021, 10, 593.	1.2	7
11	mSphere of Influence: Forgotten Questions. MSphere, 2021, 6, e0052021.	1.3	1
12	Central role of metabolism in Trypanosoma cruzi tropism and Chagas disease pathogenesis. Current Opinion in Microbiology, 2021, 63, 204-209.	2.3	9
13	Building Natural Product Libraries Using Quantitative Clade-Based and Chemical Clustering Strategies. MSystems, 2021, 6, e0064421.	1.7	3
14	Spatial metabolomics identifies localized chemical changes in heart tissue during chronic cardiac Chagas Disease. PLoS Neglected Tropical Diseases, 2021, 15, e0009819.	1.3	18
15	Ethical priority of the most actionable system of biomolecules: the metabolome. American Journal of Physical Anthropology, 2020, 171, 177-181.	2.1	10
16	Home chemical and microbial transitions across urbanization. Nature Microbiology, 2020, 5, 108-115.	5.9	83
17	Insights gained into respiratory infection pathogenesis using lung tissue metabolomics. PLoS Pathogens, 2020, 16, e1008662.	2.1	15
18	Mapping of host-parasite-microbiome interactions reveals metabolic determinants of tropism and tolerance in Chagas disease. Science Advances, 2020, 6, eaaz2015.	4.7	39

#	Article	IF	CITATIONS
19	Feature-based molecular networking in the GNPS analysis environment. Nature Methods, 2020, 17, 905-908.	9.0	650
20	ReDU: a framework to find and reanalyze public mass spectrometry data. Nature Methods, 2020, 17, 901-904.	9.0	79
21	Local Phenomena Shape Backyard Soil Metabolite Composition. Metabolites, 2020, 10, 86.	1.3	10
22	Scaffold and Parasite Hopping: Discovery of New Protozoal Proliferation Inhibitors. ACS Medicinal Chemistry Letters, 2020, 11, 249-257.	1.3	17
23	Analysis of university workplace building surfaces reveals usage-specific chemical signatures. Building and Environment, 2019, 162, 106289.	3.0	6
24	A complete Leishmania donovani reference genome identifies novel genetic variations associated with virulence. Scientific Reports, 2018, 8, 16549.	1.6	41
25	Metabolomics: Eavesdropping on silent conversations between hosts and their unwelcome guests. PLoS Pathogens, 2018, 14, e1006926.	2.1	11
26	Best practices for analysing microbiomes. Nature Reviews Microbiology, 2018, 16, 410-422.	13.6	1,138
27	Cysteine proteases in protozoan parasites. PLoS Neglected Tropical Diseases, 2018, 12, e0006512.	1.3	104
28	Experimental Chagas disease-induced perturbations of the fecal microbiome and metabolome. PLoS Neglected Tropical Diseases, 2018, 12, e0006344.	1.3	39
29	Rapid Chagas Disease Drug Target Discovery Using Directed Evolution in Drug-Sensitive Yeast. ACS Chemical Biology, 2017, 12, 422-434.	1.6	26
30	Mass Spectrometry-Based Chemical Cartography of a Cardiac Parasitic Infection. Analytical Chemistry, 2017, 89, 10414-10421.	3.2	35
31	Mass Spectrometry-Based Visualization of Molecules Associated with Human Habitats. Analytical Chemistry, 2016, 88, 10775-10784.	3.2	44
32	Synthesis and Evaluation of Oxyguanidine Analogues of the Cysteine Protease Inhibitor WRR-483 against Cruzain. ACS Medicinal Chemistry Letters, 2016, 7, 77-82.	1.3	26
33	Location, Location, Location: Five Facts about Tissue Tropism and Pathogenesis. PLoS Pathogens, 2016, 12, e1005519.	2.1	31
34	Machine Learning Models and Pathway Genome Data Base for Trypanosoma cruzi Drug Discovery. PLoS Neglected Tropical Diseases, 2015, 9, e0003878.	1.3	74
35	Adaptation of <i>Leishmania donovani</i> to Cutaneous and Visceral Environments: in Vivo Selection and Proteomic Analysis. Journal of Proteome Research, 2015, 14, 1033-1059.	1.8	20
36	Targeting Ergosterol Biosynthesis in Leishmania donovani: Essentiality of Sterol 14alpha-demethylase. PLoS Neglected Tropical Diseases, 2015, 9, e0003588.	1.3	90

#	Article	IF	CITATION
37	Genetic Analysis of Leishmania donovani Tropism Using a Naturally Attenuated Cutaneous Strain. PLoS Pathogens, 2014, 10, e1004244.	2.1	97
38	Determinants of disease phenotype in trypanosomatid parasites. Trends in Parasitology, 2014, 30, 342-349.	1.5	58
39	Leishmanization revisited: Immunization with a naturally attenuated cutaneous Leishmania donovani isolate from Sri Lanka protects against visceral leishmaniasis. Vaccine, 2013, 31, 1420-1425.	1.7	38
40	Determinants for the Development of Visceral Leishmaniasis Disease. PLoS Pathogens, 2013, 9, e1003053.	2.1	175
41	Involvement of the Leishmania donovani virulence factor A2 in protection against heat and oxidative stress. Experimental Parasitology, 2012, 132, 109-115.	0.5	29
42	Localization and induction of the A2 virulence factor in $\langle i \rangle$ Leishmania $\langle i \rangle$: evidence that A2 is a stress response protein. Molecular Microbiology, 2010, 77, 518-530.	1.2	60