Simon M Hooker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2990529/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Demonstration of kilohertz operation of hydrodynamic optical-field-ionized plasma channels. Physical Review Accelerators and Beams, 2022, 25, .	1.6	10
2	A history of high-power laser research and development in the United Kingdom. High Power Laser Science and Engineering, 2021, 9, .	4.6	13
3	Gev-Scale Accelerators Driven by Plasma-Modulated Pulses from Kilohertz Lasers. Physical Review Letters, 2021, 127, 184801.	7.8	12
4	Increasing the brightness of harmonic XUV radiation with spatially-tailored driver beams. Journal of Optics (United Kingdom), 2021, 23, 015502.	2.2	3
5	Numerical modelling of chromatic effects on axicon-focused beams used to generate HOFI plasma channels. Journal of Physics: Conference Series, 2020, 1596, 012049.	0.4	1
6	Meter-scale conditioned hydrodynamic optical-field-ionized plasma channels. Physical Review E, 2020, 102, 053201.	2.1	17
7	Nonlinear plasma wavelength scalings in a laser wakefield accelerator. Physical Review E, 2020, 101, 023209.	2.1	9
8	Guiding of high-intensity laser pulses in 100-mm-long hydrodynamic optical-field-ionized plasma channels. Physical Review Accelerators and Beams, 2020, 23, .	1.6	18
9	EuPRAXIA Conceptual Design Report. European Physical Journal: Special Topics, 2020, 229, 3675-4284.	2.6	64
10	Electron trapping and reinjection in prepulse-shaped gas targets for laser-plasma accelerators. Physical Review Accelerators and Beams, 2020, 23, .	1.6	1
11	EuPRAXIA $\hat{a} \in \hat{a}$ a compact, cost-efficient particle and radiation source. AIP Conference Proceedings, 2019, ,	0.4	7
12	Direct Observation of Plasma Waves and Dynamics Induced by Laser-Accelerated Electron Beams. Physical Review X, 2019, 9, .	8.9	19
13	Status of the Horizon 2020 EuPRAXIA conceptual design study*. Journal of Physics: Conference Series, 2019, 1350, 012059.	0.4	11
14	Eupraxia, A Step Toward A Plasma-Wakefield Based Accelerator With High Beam Quality. Journal of Physics: Conference Series, 2019, 1350, 012068.	0.4	2
15	Low-density hydrodynamic optical-field-ionized plasma channels generated with an axicon lens. Physical Review Accelerators and Beams, 2019, 22, .	1.6	37
16	Optimised XUV holography using spatially shaped high harmonic beams. Optics Express, 2019, 27, 29016.	3.4	3
17	Quasi-phase-matched high-harmonic generation in gas-filled hollow-core photonic crystal fiber. Optica, 2019, 6, 442.	9.3	17
18	Comparison of Strong-field Ionization Models in the Wavelength-scaling of High Harmonic Generation. Optics Express, 2019, 27, 6925.	3.4	4

#	Article	IF	CITATIONS
19	Overview of the CLEAR plasma lens experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 379-382.	1.6	13
20	Emittance Preservation in an Aberration-Free Active Plasma Lens. Physical Review Letters, 2018, 121, 194801.	7.8	52
21	Hydrodynamic optical-field-ionized plasma channels. Physical Review E, 2018, 97, 053203.	2.1	49
22	Spatially resolved common-path high-order harmonic interferometry. Optics Letters, 2018, 43, 5275.	3.3	5
23	Reconstructing nonlinear plasma wakefields using a generalized temporally encoded spectral shifting analysis. Physical Review Accelerators and Beams, 2018, 21, .	1.6	1
24	Blind digital holographic microscopy. , 2017, , .		0
25	Combined visible and near-infrared OPA for wavelength scaling experiments in strong-field physics. , 2017, , .		1
26	Horizon 2020 EuPRAXIA design study. Journal of Physics: Conference Series, 2017, 874, 012029.	0.4	60
27	Excitation and Control of Plasma Wakefields by Multiple Laser Pulses. Physical Review Letters, 2017, 119, 044802.	7.8	39
28	Multimode quasi-phase-matching of high-order harmonic generation in gas-filled photonic crystal fibers. , 2017, , .		0
29	Improving the resolution obtained in lensless imaging with spatially shaped high-order harmonics. , 2017, , .		Ο
30	High harmonic generation in gas-filled photonic crystal fibers. , 2017, , .		0
31	Quasi-phase-matched high harmonic generation in gas-filled photonic crystal fibers. , 2017, , .		Ο
32	A compact, low cost Marx bank for generating capillary discharge plasmas. Review of Scientific Instruments, 2016, 87, 093302.	1.3	5
33	Gaussian-Schell analysis of the transverse spatial properties of high-harmonic beams. Scientific Reports, 2016, 6, 30504.	3.3	10
34	Generation of laser pulse trains for tests of multi-pulse laser wakefield acceleration. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 829, 383-385.	1.6	17
35	Electron bunch profile reconstruction based on phase-constrained iterative algorithm. Physical Review Accelerators and Beams, 2016, 19, .	1.6	8
36	X-ray characterization by energy-resolved powder diffraction. Physical Review Accelerators and Beams, 2016, 19, .	1.6	0

#	Article	IF	CITATIONS
37	Temporal evolution of longitudinal bunch profile in a laser wakefield accelerator. Physical Review Special Topics: Accelerators and Beams, 2015, 18, .	1.8	35
38	Multi-pulse laser wakefield acceleration: a new route to efficient, high-repetition-rate plasma accelerators and high flux radiation sources. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 234003.	1.5	36
39	Laser and Plasma Accelerator Workshop 2013. Plasma Physics and Controlled Fusion, 2014, 56, 080301.	2.1	1
40	General analytic solution for far-field phase and amplitude control, with a phase-only spatial light modulator. Optics Letters, 2014, 39, 2137.	3.3	12
41	Quasi-phase-matched high-order harmonic generation using tunable pulse trains. Optics Express, 2014, 22, 7722.	3.4	13
42	Special issue on compact x-ray sources. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 070401.	1.5	0
43	Special issue on compact x-ray sources. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 230301.	1.5	0
44	Two-Pulse Ionization Injection into Quasilinear Laser Wakefields. Physical Review Letters, 2013, 111, 155004.	7.8	41
45	Developments in laser-driven plasma accelerators. Nature Photonics, 2013, 7, 775-782.	31.4	265
46	Quasi-phase-matching of high-order-harmonic generation using multimode polarization beating. Physical Review A, 2013, 87, .	2.5	13
47	Longitudinal electron bunch profile reconstruction by performing phase retrieval on coherent transition radiation spectra. Physical Review Special Topics: Accelerators and Beams, 2013, 16, .	1.8	24
48	Complete spatial characterization of an optical wavefront using a variable-separation pinhole pair. Optics Letters, 2013, 38, 1173.	3.3	14
49	Investigation of GeV-scale electron acceleration in a gas-filled capillary discharge waveguide. New Journal of Physics, 2013, 15, 045024.	2.9	20
50	Complete spatial characterization of an optical wavefront using a variable-separation pinhole Pair. , 2013, , .		0
51	Polarization-controlled quasi-phase matching for linearly and circularly polarized high harmonic generation. , 2013, , .		Ο
52	Transverse beam profile measurements of laser accelerated electrons using coherent optical radiation. , 2013, , .		1
53	Multiple pulse resonantly enhanced laser plasma wakefield acceleration. , 2013, , .		2
54	Quasi-phase-matching of high harmonic generation using counter-propagating pulses. EPJ Web of Conferences, 2013, 41, 01013.	0.3	0

#	Article	IF	CITATIONS
55	Polarization-controlled quasi-phase-matching of high harmonic generation. EPJ Web of Conferences, 2013, 41, 01008.	0.3	0
56	Electron acceleration driven in plasma channels at the Astra-Gemini laser facility. , 2013, , .		0
57	Quasi-phase-matching high harmonic generation using trains of pulses produced using an array of birefringent plates. Optics Express, 2012, 20, 6236.	3.4	27
58	Optical rotation quasi-phase-matching for circularly polarized high harmonic generation. Optics Letters, 2012, 37, 2415.	3.3	31
59	Quasi-phase-matching of high-order-harmonic generation using polarization beating in optical waveguides. Physical Review A, 2012, 85, .	2.5	12
60	Simulation of free-electron lasers seeded with broadband radiation. Physical Review Special Topics: Accelerators and Beams, 2011, 14, .	1.8	6
61	Time-resolved plasma temperature measurements in a laser-triggered hydrogen-filled capillary discharge waveguide. Plasma Sources Science and Technology, 2011, 20, 055014.	3.1	3
62	All-Optical Steering of Laser-Wakefield-Accelerated Electron Beams. Physical Review Letters, 2010, 105, 215001.	7.8	94
63	First milestone on the path toward a table-top free-electron laser (FEL). , 2010, , .		Ο
64	Generation and control of chirped, ultrafast pulse trains. Journal of Optics (United Kingdom), 2010, 12, 015201.	2.2	8
65	Generation and control of ultrafast pulse trains for quasi-phase-matching high-harmonic generation. Journal of the Optical Society of America B: Optical Physics, 2010, 27, 763.	2.1	18
66	Laser-wakefield acceleration of electron beams in a low density plasma channel. Physical Review Special Topics: Accelerators and Beams, 2010, 13, .	1.8	38
67	Investigation of the role of plasma channels as waveguides for laser-wakefield accelerators. New Journal of Physics, 2010, 12, 045008.	2.9	15
68	Stable Laser-Driven Electron Beams from a Steady-State-Flow Gas Cell. , 2009, , .		2
69	Laser-driven soft-X-ray undulator source. Nature Physics, 2009, 5, 826-829.	16.7	324
70	Comparison of Parallel and Perpendicular Polarized Counterpropagating Light for Quasi-Phase-Matching High Harmonic Generation. Springer Series in Chemical Physics, 2009, , 15-17.	0.2	0
71	Chirped Pulse Trains for Quasi-Phase-Matching High Harmonic Generation. , 2009, , .		0
72	Laser-Driven Acceleration of Electrons in a Partially Ionized Plasma Channel. Physical Review Letters, 2008, 100, 105005.	7.8	84

#	Article	IF	CITATIONS
73	Generation of Stable, Low-Divergence Electron Beams by Laser-Wakefield Acceleration in a Steady-State-Flow Gas Cell. Physical Review Letters, 2008, 101, 085002.	7.8	192
74	Laser wakefield simulations towards development of compact particle accelerators. Journal of Physics: Conference Series, 2007, 78, 012021.	0.4	5
75	Performance of capillary discharge guided laser plasma wakefield accelerator. , 2007, , .		1
76	GeV electron beams from a centimeter-scale channel guided laser wakefield accelerator. Physics of Plasmas, 2007, 14, 056708.	1.9	118
77	Bright Quasi-Phase-Matched Soft-X-Ray Harmonic Radiation from Argon Ions. Physical Review Letters, 2007, 99, 143901.	7.8	109
78	GeV plasma accelerators driven in waveguides. Plasma Physics and Controlled Fusion, 2007, 49, B403-B410.	2.1	12
79	Simple technique for generating trains of ultrashort pulses. Optics Letters, 2007, 32, 2203.	3.3	13
80	Comparison of parallel and perpendicular polarized counterpropagating light for suppressing high harmonic generation. Journal of the Optical Society of America B: Optical Physics, 2007, 24, 2421.	2.1	11
81	Quasi-phasematching of harmonic generation via multimode beating in waveguides. Optics Express, 2007, 15, 7894.	3.4	29
82	Generation of a train of ultrashort pulses from a compact birefringent crystal array. Applied Optics, 2007, 46, 5142.	2.1	67
83	Modeling of a square pulsed capillary discharge waveguide for interferometry measurements. Physics of Plasmas, 2007, 14, 023501.	1.9	10
84	GeV-scale electron acceleration in a gas-filled capillary discharge waveguide. New Journal of Physics, 2007, 9, 415-415.	2.9	132
85	Transverse Interferometry of a Hydrogen-Filled Capillary Discharge Waveguide. Physical Review Letters, 2007, 98, 025002.	7.8	102
86	GeV electron beams from a centimeter-scale laser-driven plasma accelerator. , 2007, , .		0
87	GeV electron beams from a laser-plasma accelerator. , 2006, , .		0
88	Energy extraction from pulsed amplified stimulated emission lasers operating under conditions of strong saturation. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 1057.	2.1	1
89	Inverse free electron lasers and laser wakefield acceleration driven by CO 2 lasers. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364, 611-622.	3.4	5
90	GeV electron beams from a centimetre-scale accelerator. Nature Physics, 2006, 2, 696-699.	16.7	1,521

#	Article	IF	CITATIONS
91	Update on Seeded SM-LWFA and Pseudo-Resonant LWFA Experiments — (STELLA-LW). AIP Conference Proceedings, 2006, , .	0.4	4
92	GeV laser-plasma electron acceleration in a cm-scale capillary waveguide. , 2006, , .		0
93	Simulations of recombination lasing in Ar7+ driven by optical field ionization in a capillary discharge waveguide. Optics Communications, 2005, 249, 501-513.	2.1	6
94	Effects of polarization on inverse Bremsstrahlung heating of a plasma. Physical Review E, 2005, 72, 036402.	2.1	5
95	Progress in optical-field-ionization soft X-ray lasers at LOA. Laser and Particle Beams, 2005, 23, .	1.0	7
96	Pseudoresonant laser Wakefield acceleration driven by 10.6-/spl mu/m laser light. IEEE Transactions on Plasma Science, 2005, 33, 3-7.	1.3	8
97	Dramatic enhancement of xuv laser output using a multimode gas-filled capillary waveguide. Physical Review A, 2005, 71, .	2.5	26
98	Lasers collisionnels à 41.8 nm en régime guidé. European Physical Journal Special Topics, 2005, 127, 33-37.	0.2	0
99	41.8â^'nmXe8+laser driven in a plasma waveguide. Physical Review A, 2004, 70, .	2.5	12
100	A Review of Laser Guiding Experiments. AIP Conference Proceedings, 2004, , .	0.4	5
101	Laser Wakefield Acceleration Driven by ATF CO2 Laser (STELLA-LW). AIP Conference Proceedings, 2004, ,	0.4	1
102	Application of the Gas-Filled Capillary Discharge Waveguide to Laser-Plasma Acceleration. AIP Conference Proceedings, 2004, , .	0.4	1
103	Progress on Collisionally Pumped Optical-Field-Ionization Soft X-Ray Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10, 1351-1362.	2.9	1
104	Molecular-dynamic calculation of the inverse-bremsstrahlung heating of non-weakly-coupled plasmas. Physical Review E, 2004, 70, 056411.	2.1	23
105	Demonstration of a Collisionally Excited Optical-Field-Ionization XUV Laser Driven in a Plasma Waveguide. Physical Review Letters, 2003, 91, 205001.	7.8	74
106	Gas-filled capillary discharge waveguides. Journal of the Optical Society of America B: Optical Physics, 2003, 20, 138.	2.1	67
107	Molecular-dynamic calculation of the relaxation of the electron energy distribution function in a plasma. Physical Review E, 2003, 68, 056401.	2.1	8
108	Demonstration of lasing at 41.8 nm in Xe8+driven in a plasma waveguide. , 2003, , .		0

#	Article	IF	CITATIONS
109	Guiding of High-Intensity Laser Pulses with a Hydrogen-Filled Capillary Discharge Waveguide. Physical Review Letters, 2002, 89, 185003.	7.8	204
110	Simulations of a hydrogen-filled capillary discharge waveguide. Physical Review E, 2001, 65, 016407.	2.1	163
111	First demonstration of guiding of high-intensity laser pulses in a hydrogen-filled capillary discharge waveguide. Journal of Physics B: Atomic, Molecular and Optical Physics, 2001, 34, 4103-4112.	1.5	43
112	Inner-shell soft X-ray lasers in Ne-like ions driven by optical field ionization. Optics Communications, 2000, 182, 209-219.	2.1	3
113	Simulations of the propagation of high-intensity laser pulses in discharge-ablated capillary waveguides. , 2000, , .		0
114	Inner-shell soft x-ray lasers driven by optical field ionization. , 2000, , .		0
115	Guiding of high-intensity picosecond laser pulses in a discharge-ablated capillary waveguide. Journal of the Optical Society of America B: Optical Physics, 2000, 17, 90.	2.1	40
116	Simulations of the propagation of high-intensity laser pulses in discharge-ablated capillary waveguides. Journal of the Optical Society of America B: Optical Physics, 2000, 17, 1565.	2.1	16
117	Investigation of a hydrogen plasma waveguide. Physical Review E, 2000, 63, 015401.	2.1	175
118	Measurement of the electron-density profile in a discharge-ablated capillary waveguide. Optics Letters, 1999, 24, 993.	3.3	28
119	Effects of a prepulse in the femtosecond-pulse-driven Xe IX laser. Journal of the Optical Society of America B: Optical Physics, 1997, 14, 2735.	2.1	16
120	Vacuum ultraviolet gain measurements in optically pumped LiYF 4 :Nd 3+. Applied Physics B: Lasers and Optics, 1997, 64, 293-300.	2.2	4
121	Femtosecond-pulse-driven electron-excited extreme-ultraviolet lasers in Be-like ions. Optics Letters, 1995, 20, 1994.	3.3	10
122	Laser ablation of polymeric materials at 157 nm. Journal of Applied Physics, 1995, 77, 2343-2350.	2.5	51
123	Progress in vacuum ultraviolet lasers. Progress in Quantum Electronics, 1994, 18, 227-274.	7.0	27
124	Observation of vacuum ultraviolet laser oscillation in nitric oxide. Applied Optics, 1993, 32, 2062.	2.1	3
125	Determination of the gain coefficient of an NO laser at 218 nm. Journal Physics D: Applied Physics, 1992, 25, 593-596.	2.8	2
126	Observation of new laser transitions and saturation effects in optically pumped NO. Applied Physics B, Photophysics and Laser Chemistry, 1992, 54, 119-125.	1.5	3

#	Article	IF	CITATIONS
127	Influence of cavity configuration on the pulse energy of a high-pressure molecular fluorine laser. Applied Physics B, Photophysics and Laser Chemistry, 1992, 55, 54-59.	1.5	9
128	The absorption of 158 nm radiation in nitric oxide. Applied Physics B, Photophysics and Laser Chemistry, 1990, 51, 127-131.	1.5	3
129	Observation of laser oscillation in nitric oxide at 218 nm. Optics Letters, 1990, 15, 437.	3.3	11
130	F/sub 2/ pumped NO: laser oscillation at 218 nm and prospects for new laser transitions in the 160-250 nm region. IEEE Journal of Quantum Electronics, 1990, 26, 1529-1535.	1.9	6
131	Measurements of transient gain and loss in solid state VUV laser materials. , 0, , .		0
132	Investigation of a discharge-ablated capillary waveguide for high-intensity laser pulses. , 0, , .		0