Gang Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2990204/publications.pdf Version: 2024-02-01

CANC CHENC

#	Article	IF	CITATIONS
1	Harvesting Water Drop Energy by a Sequential Contactâ€Electrification and Electrostaticâ€Induction Process. Advanced Materials, 2014, 26, 4690-4696.	11.1	592
2	Water–Solid Surface Contact Electrification and its Use for Harvesting Liquidâ€Wave Energy. Angewandte Chemie - International Edition, 2013, 52, 12545-12549.	7.2	384
3	Silicon-based hybrid cell for harvesting solar energy and raindrop electrostatic energy. Nano Energy, 2014, 9, 291-300.	8.2	225
4	Dual-Mode Triboelectric Nanogenerator for Harvesting Water Energy and as a Self-Powered Ethanol Nanosensor. ACS Nano, 2014, 8, 6440-6448.	7.3	222
5	Pulsed Nanogenerator with Huge Instantaneous Output Power Density. ACS Nano, 2013, 7, 7383-7391.	7.3	209
6	ZnO nanowire Schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed. Applied Physics Letters, 2011, 99, .	1.5	200
7	Triboelectric Nanogenerator as an Active UV Photodetector. Advanced Functional Materials, 2014, 24, 2810-2816.	7.8	180
8	A Hybridized Power Panel to Simultaneously Generate Electricity from Sunlight, Raindrops, and Wind around the Clock. Advanced Energy Materials, 2015, 5, 1501152.	10.2	174
9	High Energy Storage Efficiency Triboelectric Nanogenerators with Unidirectional Switches and Passive Power Management Circuits. Advanced Functional Materials, 2018, 28, 1805216.	7.8	174
10	Simultaneously Harvesting Electrostatic and Mechanical Energies from Flowing Water by a Hybridized Triboelectric Nanogenerator. ACS Nano, 2014, 8, 1932-1939.	7.3	172
11	The self-powered CO2 gas sensor based on gas discharge induced by triboelectric nanogenerator. Nano Energy, 2018, 53, 898-905.	8.2	146
12	Managing and maximizing the output power of a triboelectric nanogenerator by controlled tip–electrode air-discharging and application for UV sensing. Nano Energy, 2018, 44, 208-216.	8.2	145
13	A universal and passive power management circuit with high efficiency for pulsed triboelectric nanogenerator. Nano Energy, 2020, 68, 104372.	8.2	133
14	Managing and optimizing the output performances of a triboelectric nanogenerator by a self-powered electrostatic vibrator switch. Nano Energy, 2018, 46, 220-228.	8.2	97
15	Single-electrode-based rotationary triboelectric nanogenerator and its applications as self-powered contact area and eccentric angle sensors. Nano Energy, 2015, 11, 323-332.	8.2	91
16	A multi-layered interdigitative-electrodes-based triboelectric nanogenerator for harvesting hydropower. Nano Energy, 2015, 15, 256-265.	8.2	89
17	A Sliding-Mode Triboelectric Nanogenerator with Chemical Group Grated Structure by Shadow Mask Reactive Ion Etching. ACS Nano, 2017, 11, 8796-8803.	7.3	86
18	Measuring the actual voltage of a triboelectric nanogenerator using the non-grounded method. Nano Energy, 2020, 77, 105108.	8.2	80

GANG CHENG

#	Article	IF	CITATIONS
19	Rotational pulsed triboelectric nanogenerators integrated with synchronously triggered mechanical switches for high efficiency self-powered systems. Nano Energy, 2021, 82, 105725.	8.2	80
20	Concurrent Harvesting of Ambient Energy by Hybrid Nanogenerators for Wearable Self-Powered Systems and Active Remote Sensing. ACS Applied Materials & Interfaces, 2018, 10, 14708-14715.	4.0	78
21	Tuning oxygen vacancies and improving UV sensing of ZnO nanowire by micro-plasma powered by a triboelectric nanogenerator. Nano Energy, 2020, 67, 104210.	8.2	75
22	Hybrid energy harvester with bi-functional nano-wrinkled anti-reflective PDMS film for enhancing energies conversion from sunlight and raindrops. Nano Energy, 2019, 66, 104188.	8.2	64
23	The high-speed ultraviolet photodetector of ZnO nanowire Schottky barrier based on the triboelectric-nanogenerator-powered surface-ionic-gate. Nano Energy, 2019, 60, 680-688.	8.2	62
24	Increase Output Energy and Operation Frequency of a Triboelectric Nanogenerator by Two Grounded Electrodes Approach. Advanced Functional Materials, 2014, 24, 2892-2898.	7.8	60
25	Multilayeredâ€Electrodeâ€Based Triboelectric Nanogenerators with Managed Output Voltage and Multifold Enhanced Charge Transport. Advanced Energy Materials, 2015, 5, 1401452.	10.2	56
26	The novel transistor and photodetector of monolayer MoS2 based on surface-ionic-gate modulation powered by a triboelectric nanogenerator. Nano Energy, 2019, 62, 38-45.	8.2	46
27	A general charge compensation strategy for calibrating the voltage of a triboelectric nanogenerator measured by a capacitive circuit. Nano Energy, 2021, 86, 106056.	8.2	44
28	A stretchable self-powered triboelectric tactile sensor with EGaIn alloy electrode for ultra-low-pressure detection. Nano Energy, 2021, 89, 106320.	8.2	41
29	The self-powered artificial synapse mechanotactile sensing system by integrating triboelectric plasma and gas-ionic-gated graphene transistor. Nano Energy, 2022, 91, 106660.	8.2	41
30	The unsaturated photocurrent controlled by two-dimensional barrier geometry of a single ZnO nanowire Schottky photodiode. Applied Physics Letters, 2008, 93, .	1.5	36
31	Meter-scale fabrication of water-driven triboelectric nanogenerator based on in-situ grown layered double hydroxides through a bottom-up approach. Nano Energy, 2020, 71, 104646.	8.2	32
32	Self-Powered Intelligent Water Meter for Electrostatic Scale Preventing, Rust Protection, and Flow Sensor in a Solar Heater System. ACS Applied Materials & Interfaces, 2019, 11, 6396-6403.	4.0	31
33	Cd(OH)2@ZnO nanowires thin-film transistor and UV photodetector with a floating ionic gate tuned by a triboelectric nanogenerator. Nano Energy, 2020, 73, 104808.	8.2	31
34	A Nasal Temperature and pH Dual-Responsive In Situ Gel Delivery System Based on Microemulsion of Huperzine A: Formulation, Evaluation, and In Vivo Pharmacokinetic Study. AAPS PharmSciTech, 2019, 20, 301.	1.5	28
35	From mouse to mouseâ€ear cress: Nanomaterials as vehicles in plant biotechnology. Exploration, 2021, 1, 9-20	5.4	27
36	Selective aerobic oxidation of alkyl aromatics on Bi ₂ MoO ₆ nanoplates decorated with Pt nanoparticles under visible light irradiation. Chemical Communications, 2018, 54, 12194-12197.	2.2	26

GANG CHENG

#	Article	IF	CITATIONS
37	A self-powered photodetector using a pulsed triboelectric nanogenerator for actual working environments with random mechanical stimuli. Nano Energy, 2021, 90, 106518.	8.2	25
38	Study on dynamics of photoexcited charge injection and trapping in CdS quantum dots sensitized TiO2 nanowire array film electrodes. Applied Physics Letters, 2014, 104, .	1.5	23
39	Preparation and In Vitro/In Vivo Evaluation of Puerarin Solid Self-Microemulsifying Drug Delivery System by Spherical Crystallization Technique. AAPS PharmSciTech, 2016, 17, 1336-1346.	1.5	19
40	Triboelectric plasma decomposition of CO2 at room temperature driven by mechanical energy. Nano Energy, 2021, 88, 106287.	8.2	19
41	A robust all-inorganic hybrid energy harvester for synergistic energy collection from sunlight and raindrops. Nanotechnology, 2021, 32, 075401.	1.3	19
42	2D Cu ₉ S ₅ /PtS ₂ /WSe ₂ Double Heterojunction Bipolar Transistor with High Current Gain. Advanced Materials, 2021, 33, e2106537.	11.1	19
43	A water collection system with ultra-high harvest rate and ultra-low energy consumption by integrating triboelectric plasma. Nano Energy, 2022, 96, 107081.	8.2	15
44	The water droplet with huge charge density excited by triboelectric nanogenerator for water sterilization. Nanotechnology, 2021, 32, 415404.	1.3	13
45	Temperature-Dependent Electrical Transport Properties of Individual NiCo2O4 Nanowire. Nanoscale Research Letters, 2019, 14, 10.	3.1	12
46	The triboelectric microplasma transistor of monolayer graphene with a reversible oxygen ion floating gate. Nano Energy, 2020, 78, 105229.	8.2	12
47	The recent progress of triboelectric nanogenerator-assisted photodetectors. Nanotechnology, 2020, 31, 292003.	1.3	11
48	Interactive-excited waterdrop triboelectric nanogenerator with ultrahigh charge density and instantaneous power. Nano Energy, 2022, 97, 107158.	8.2	11
49	Preparation of CuIn(S <i>_x</i> Se _{1–<i>x</i>}) ₂ thin films with tunable band gap by controlling sulfurization temperature of CuInSe ₂ . Journal of Materials Research, 2010, 25, 2426-2429.	1.2	10
50	Triboelectric Plasma CO ₂ Reduction Reaching a Mechanical Energy Conversion Efficiency of 2.3%. Advanced Science, 2022, 9, .	5.6	10
51	Modulating the surface states of electric field assembled CuO nanowires by electrochemical deposition method. Applied Physics Letters, 2009, 95, .	1.5	7
52	Triboelectric Plasma-Catalytic CO Oxidation of MnO2 Nanostructures Driven by Mechanical Energy at Room Temperature. ACS Applied Nano Materials, 2022, 5, 1426-1434.	2.4	7
53	The Regulation of O2 Spin State and Direct Oxidation of CO at Room Temperature Using Triboelectric Plasma by Harvesting Mechanical Energy. Nanomaterials, 2021, 11, 3408.	1.9	7
54	Analyses of electrochemical behavior of plasma electrolytic oxidation film on Zirlo alloy in lithium borate buffer solution at 25–300°C. Surface and Coatings Technology, 2022, 429, 127935.	2.2	5

0

#	Article	IF	CITATIONS
55	Path-related unexpected injection charges in BaTiO3 ferroelectric thin films studied by Kelvin force microscopy. Applied Physics Letters, 2010, 97, 162902.	1.5	4

56 ANALYSIS OF A SINGLE BIOMOLECULE TRANSITING WITH NANOPORE. , 2009, , .