Ariana E Sutton-Grier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2990158/publications.pdf Version: 2024-02-01

ADIANA E SHITTON-CDIED

#	Article	IF	CITATIONS
1	Innovations in Coastline Management With Natural and Nature-Based Features (NNBF): Lessons Learned From Three Case Studies. Frontiers in Built Environment, 2022, 8, .	2.3	16
2	Coastal Wetlands Exposure to Storm Surge and Waves in the Albemarle-Pamlico Estuarine System during Extreme Events. Wetlands, 2021, 41, 1.	1.5	11
3	Increasing the Impact of Public Engagement Within and Beyond the Ecological Society of America. Bulletin of the Ecological Society of America, 2020, 101, e01773.	0.2	2
4	Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Science of the Total Environment, 2020, 733, 137782.	8.0	368
5	Stakeholder-defined scientific needs for coastal resilience decisions in the Northeast U.S Marine Policy, 2020, 118, 103987.	3.2	20
6	Protecting wetlands for people: Strategic policy action can help wetlands mitigate risks and enhance resilience. Environmental Science and Policy, 2020, 108, 37-44.	4.9	20
7	Social Factors Key to Landscape-Scale Coastal Restoration: Lessons Learned from Three U.S. Case Studies. Sustainability, 2020, 12, 869.	3.2	34
8	The Second Warning to Humanity – Providing a Context for Wetland Management and Policy. Wetlands, 2019, 39, 1-5.	1.5	67
9	Conservation of Wetlands and Other Coastal Ecosystems: a Commentary on their Value to Protect Biodiversity, Reduce Disaster Impacts, and Promote Human Health and Well-Being. Wetlands, 2019, 39, 1295-1302.	1.5	46
10	Voluntary Restoration: Mitigation's Silent Partner in the Quest to Reverse Coastal Wetland Loss in the USA. Frontiers in Marine Science, 2019, 6, 511.	2.5	13
11	An analysis of the potential positive and negative livelihood impacts of coastal carbon offset projects. Journal of Environmental Management, 2019, 235, 463-479.	7.8	33
12	Coastal wetlands are the best marine carbon sink for climate mitigation. Frontiers in Ecology and the Environment, 2018, 16, 73-74.	4.0	14
13	Wetlands In a Changing Climate: Science, Policy and Management. Wetlands, 2018, 38, 183-205.	1.5	234
14	Coastal wetland management as a contribution to the US National Greenhouse Gas Inventory. Nature Climate Change, 2018, 8, 1109-1112.	18.8	58
15	Natural climate solutions for the United States. Science Advances, 2018, 4, eaat1869.	10.3	333
16	Uncertainty in United States coastal wetland greenhouse gas inventorying. Environmental Research Letters, 2018, 13, 115005.	5.2	40
17	Pathways to Coastal Resiliency: The Adaptive Gradients Framework. Sustainability, 2018, 10, 2629.	3.2	20
18	Sustaining wetlands to mitigate disasters and protect people. Frontiers in Ecology and the Environment, 2018, 16, 431-431.	4.0	5

2

ARIANA E SUTTON-GRIER

#	Article	IF	CITATIONS
19	Investing in Natural and Nature-Based Infrastructure: Building Better Along Our Coasts. Sustainability, 2018, 10, 523.	3.2	92
20	National Policy Opportunities to Support Blue Carbon Conservation. , 2018, , 235-247.		1
21	Revisiting the <scp>H</scp> oly <scp>G</scp> rail: using plant functional traits to understand ecological processes. Biological Reviews, 2017, 92, 1156-1173.	10.4	557
22	Clarifying the role of coastal and marine systems in climate mitigation. Frontiers in Ecology and the Environment, 2017, 15, 42-50.	4.0	321
23	Catching a wave? A case study on incorporating storm protection benefits into Habitat Equivalency Analysis. Marine Policy, 2017, 83, 118-125.	3.2	3
24	A conceptual model to assess stressâ€associated health effects of multiple ecosystem services degraded by disaster events in the Gulf of Mexico and elsewhere. GeoHealth, 2017, 1, 17-36.	4.0	29
25	Leveraging Carbon Services of Coastal Ecosystems for Habitat Protection and Restoration. Coastal Management, 2016, 44, 259-277.	2.0	32
26	Keys to successful blue carbon projects: Lessons learned from global case studies. Marine Policy, 2016, 65, 76-84.	3.2	224
27	Making ecosystem services part of business as usual in federal governance. Frontiers in Ecology and the Environment, 2016, 14, 175-175.	4.0	3
28	Exploring connections among nature, biodiversity, ecosystem services, and human health and well-being: Opportunities to enhance health and biodiversity conservation. Ecosystem Services, 2015, 12, 1-15.	5.4	767
29	Nature as capital: Advancing and incorporating ecosystem services in United States federal policies and programs. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7383-7389.	7.1	110
30	Future of our coasts: The potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities, economies and ecosystems. Environmental Science and Policy, 2015, 51, 137-148.	4.9	451
31	Out of sight but not out of mind: Harmful effects of derelict traps in selected U.S. coastal waters. Marine Pollution Bulletin, 2014, 86, 19-28.	5.0	56
32	Connecting stressors, ocean ecosystem services, and human health. Natural Resources Forum, 2014, 38, 157-167.	3.6	66
33	Incorporating ecosystem services into the implementation of existing U.S. natural resource management regulations: Operationalizing carbon sequestration and storage. Marine Policy, 2014, 43, 246-253.	3.2	46
34	Different plant traits affect two pathways of riparian nitrogen removal in a restored freshwater wetland. Plant and Soil, 2013, 365, 41-57.	3.7	30
35	Anaerobic Metabolism in Tidal Freshwater Wetlands: I. Plant Removal Effects on Iron Reduction and Methanogenesis. Estuaries and Coasts, 2013, 36, 457-470.	2.2	19
36	Anaerobic Metabolism in Tidal Freshwater Wetlands: II. Effects of Plant Removal on Archaeal Microbial Communities. Estuaries and Coasts, 2013, 36, 471-481.	2.2	8

ARIANA E SUTTON-GRIER

#	Article	IF	CITATIONS
37	Anaerobic Metabolism in Tidal Freshwater Wetlands: III. Temperature Regulation of Iron Cycling. Estuaries and Coasts, 2013, 36, 482-490.	2.2	10
38	Considering "Coastal Carbon―in Existing U.S. Federal Statutes and Policies. Coastal Management, 2013, 41, 439-456.	2.0	19
39	Investing in nature: Restoring coastal habitat blue infrastructure and green job creation. Marine Policy, 2013, 38, 65-71.	3.2	67
40	Does the leaf economic spectrum hold within local species pools across varying environmental conditions?. Functional Ecology, 2012, 26, 1390-1398.	3.6	115
41	Twelve testable hypotheses on the geobiology of weathering. Geobiology, 2011, 9, 140-165.	2.4	133
42	Spatial Impacts of Stream and Wetland Restoration on Riparian Soil Properties in the North Carolina Piedmont. Restoration Ecology, 2011, 19, 738-746.	2.9	23
43	Plant species traits regulate methane production in freshwater wetland soils. Soil Biology and Biochemistry, 2011, 43, 413-420.	8.8	121
44	Electron donors and acceptors influence anaerobic soil organic matter mineralization in tidal marshes. Soil Biology and Biochemistry, 2011, 43, 1576-1583.	8.8	82
45	Environmental Conditions Influence the Plant Functional Diversity Effect on Potential Denitrification. PLoS ONE, 2011, 6, e16584.	2.5	24
46	Examining the relationship between ecosystem structure and function using structural equation modelling: A case study examining denitrification potential in restored wetland soils. Ecological Modelling, 2010, 221, 761-768.	2.5	47
47	Plant Trait Diversity Buffers Variability in Denitrification Potential over Changes in Season and Soil Conditions. PLoS ONE, 2010, 5, e11618.	2.5	42
48	Organic amendments improve soil conditions and denitrification in a restored riparian wetland. Wetlands, 2009, 29, 343-352.	1.5	55
49	Cross-scale variation in top-down and bottom-up control of algal abundance. Journal of Experimental Marine Biology and Ecology, 2007, 347, 8-29.	1.5	28