M Lawrence Glasser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2988986/publications.pdf

Version: 2024-02-01

93 papers 1,080 citations

16 h-index 434195 31 g-index

98 all docs 98 docs citations 98 times ranked 657 citing authors

#	Article	IF	CITATIONS
1	The uses of quantum field theory in diffusion-limited reactions. Reviews of Modern Physics, 1998, 70, 979-1001.	45.6	210
2	Indirect Interaction of Solid-State Qubits via Two-Dimensional Electron Gas. Physical Review Letters, 2001, 86, 5112-5115.	7.8	103
3	Extended Watson integrals for the cubic lattices. Proceedings of the National Academy of Sciences of the United States of America, 1977, 74, 1800-1801.	7.1	92
4	Spin Wave Spectra of Magnetite. Physical Review, 1963, 130, 1783-1789.	2.7	63
5	Exact solutions of anisotropic diffusion-limited reactions with coagulation and annihilation. Journal of Statistical Physics, 1995, 81, 881-899.	1.2	43
6	One Dimensional Models with a Singular Potential ofÂtheÂType â^'αδ(x)+βδ′(x). International Journal of Theoretical Physics, 2011, 50, 2144-2152.	1.2	40
7	Intermolecular forces in monolayers at air/water interfaces. Journal of Colloid and Interface Science, 1981, 81, 41-51.	9.4	38
8	Spectroscopy of a one-dimensional V-shaped quantum well with a point impurity. Annals of Physics, 2018, 389, 48-62.	2.8	28
9	Intermolecular Forces between then-Alkanes Methane to Butane Adsorbed at the Water/Vapor Interface. Langmuir, 2003, 19, 6820-6825.	3. 5	22
10	Second virial coefficient for a Lennard-Jones (2nâ^'n) system in dÂdimensions and confined to a nanotube surface. Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 300, 381-384.	2.1	20
11	Basic trigonometric power sums with applications. Ramanujan Journal, 2017, 42, 401-428.	0.7	19
12	Exact Partition Function for the Two-Dimensional Ising Model. American Journal of Physics, 1970, 38, 1033-1036.	0.7	18
13	Lateral Intermolecular Forces in the Physisorbed State:Â Surface Field Polarization of Benzene andn-Hexane at the Water/ and Mercury/Vapor Interfaces. Langmuir, 2005, 21, 944-949.	3.5	18
14	The energy level structure of a variety of one-dimensional confining potentials and the effects of a local singular perturbation. Canadian Journal of Physics, 2015, 93, 1588-1596.	1.1	17
15	Kinetics of anisothermal phase transformations. Journal of Applied Physics, 1983, 54, 3502-3508.	2.5	16
16	The Infinite Square Well with a Singular Perturbation. International Journal of Theoretical Physics, 2011, 50, 2191-2200.	1.2	16
17	THE MATHEMATICS OF PRINCIPAL VALUE INTEGRALS AND APPLICATIONS TO NUCLEAR PHYSICS, TRANSPORT THEORY, AND CONDENSED MATTER PHYSICS. Mathematical Models and Methods in Applied Sciences, 1996, 06, 833-885.	3.3	15
18	Complete asymptotic expansions of the Fermi–Dirac integrals Fp(l·)=1/l̃"(p+1)â^«0â^ž[lμp/(1+elμâ^·l·)]dlμ. Journ Mathematical Physics, 2001, 42, 1860-1868.	nal of 1.1	15

#	Article	IF	CITATIONS
19	Diffusion of Oligonucleotides from within Ironâ€Crossâ€Linked, Polyelectrolyteâ€Modified Alginate Beads: A Model System for Drug Release. ChemPhysChem, 2016, 17, 976-984.	2.1	15
20	Evaluation of lattice sums. IV. A fiveâ€dimensional sum. Journal of Mathematical Physics, 1975, 16, 1237-1238.	1.1	14
21	Quasibound states in an electric field. Physical Review B, 1990, 42, 7630-7632.	3.2	14
22	Exact evaluation of entropic quantities in a solvable two-particle model. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 2317-2319.	2.1	14
23	On the Entropy of Spanning Trees on a Large Triangular Lattice. Ramanujan Journal, 2005, 10, 205-214.	0.7	13
24	Spin-Wave Contribution to the Heat Capacity of Magnetite. Physical Review, 1963, 132, 47-49.	2.7	12
25	Exchange Energy of an Electron Gas of Arbitrary Dimensionality. SIAM Journal on Applied Mathematics, 1983, 43, 535-545.	1.8	12
26	A class of oneâ€dimensional relativistic band models. American Journal of Physics, 1983, 51, 936-939.	0.7	11
27	Transverse Conductivity of an Electron Gas: Zero-Frequency Limit. Physical Review, 1963, 129, 472-480.	2.7	9
28	Integral Transforms in Applied Mathematics. American Journal of Physics, 1972, 40, 785-785.	0.7	9
29	Spectral properties of the two-dimensional Schrödinger Hamiltonian with various solvable confinements in the presence of a central point perturbation. Physica Scripta, 2019, 94, 055202.	2.5	9
30	Spin-wave dispersion curves for magnetite. Physics Letters, 1962, 2, 248-249.	2.1	8
31	Phase transitions for the Ising model on the closed Cayley tree. Physica A: Statistical Mechanics and Its Applications, 1983, 119, 230-242.	2.6	8
32	Long transmission times for transport through a weakly scattering slab. Physical Review A, 1992, 45, 825-828.	2.5	8
33	Anisotropic diffusion-limited reactions with coagulation and annihilation. Physical Review E, 1996, 53, 739-742.	2.1	8
34	An integral representation for the product of two parabolic cylinder functions having unrelated arguments. Integral Transforms and Special Functions, 2015, 26, 825-828.	1.2	8
35	Thermal smearing and screening in a strong magnetic field for Dirac materials in comparison with the two dimensional electron liquid. European Physical Journal B, 2016, 89, 1.	1.5	8
36	Exact Solutions of Low-Dimensional Reaction-Diffusion Systems. International Journal of Modern Physics B, 1997, 11, 109-114.	2.0	7

#	Article	IF	CITATIONS
37	Diffusion-limited one-species reactions in the Bethe lattice. Journal of Physics Condensed Matter, 2007, 19, 065107.	1.8	7
38	The Summation of Series. SIAM Journal on Mathematical Analysis, 1971, 2, 595-600.	1.9	6
39	Efficient Thermal Modeling of SOI MOSFETs for Fast Dynamic Operation. IEEE Transactions on Electron Devices, 2004, 51, 1659-1666.	3.0	6
40	Generalized cosecant numbers and trigonometric inverse power sums. Applicable Analysis and Discrete Mathematics, 2018, 12, 70-109.	0.7	6
41	A relativistic one dimensional band model with position dependent mass. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126277.	2.1	5
42	A novel class of Bessel function integrals. Journal of Mathematical Physics, 1984, 25, 2933-2934.	1.1	4
43	Anomalous transmission-time moments in the ballistic limit of isotropic scattering. Physical Review A, 1992, 45, 8573-8579.	2.5	4
44	Critically shielded potential in a three-dimensional electron gas: The induced charge density at the origin. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 3182-3183.	2.1	4
45	Master theorems for a family of integrals. Integral Transforms and Special Functions, 2014, 25, 805-820.	1.2	4
46	Measures for the Dynamics in a Few-Body Quantum System with Harmonic Interactions. Few-Body Systems, 2018, 59, 1.	1.5	4
47	A functional identity involving elliptic integrals. Ramanujan Journal, 2018, 47, 243-251.	0.7	4
48	Electric field effects on motion of a charged particle through a saddle potential in a magnetic field. Physical Review B, 2007, 76, .	3.2	3
49	Moments of powers of the Hulthén density. Journal of Mathematical Chemistry, 2012, 50, 1707-1710.	1.5	3
50	Lehmer's Interesting Series. American Mathematical Monthly, 2013, 120, 116.	0.3	3
51	The Laplace equation in the exterior of the Hankel contour and novel identities for hypergeometric functions. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 469, 20130081.	2.1	3
52	Information-theoretic aspects of friction in the quantum mechanics of an interacting two-electron harmonic atom. Journal of Mathematical Chemistry, 2015, 53, 1274-1279.	1.5	3
53	Series Expansions for Mathematical Physicists. American Journal of Physics, 1969, 37, 337-337.	0.7	2
54	Slater sum for central field problems characterized by its s-wave component alone. Journal of Mathematical Physics, 1999, 40, 2671-2679.	1.1	2

#	Article	IF	CITATIONS
55	Exchange Energy for Two-Active-Electron Diatomic Systems Within the Surface Integral Method. Applicable Algebra in Engineering, Communications and Computing, 2004, 15, 101.	0.5	2
56	Green's function for electrons in a narrow quantum well in a parallel magnetic field. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 340, 315-319.	2.1	2
57	Some integrals of the Dedekind î-function. Journal of Mathematical Analysis and Applications, 2009, 354, 490-493. Conjectures on the evaluation of alternative modular bases and formulas approximating <mml:math< td=""><td>1.0</td><td>2</td></mml:math<>	1.0	2
58	altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML"	0.4	2
59	xmlns:tb="http://www.elsevier.com/xm//common/table/dtd" Ramanujan tybe kmml:math xmins:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" xmlns:tb="http://www.elsevier.com/xmml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" xmlns:tb="http://www.elsevier.com/xmml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" xmlns:tb="http://www.elsevier.com/xmml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" xmlns:tb="http://www.elsevier.com/xmml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" xmlns:tb="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" xmlns:tb="http://www.w3.org/1998/Math/Math/MathML" altimg="si1.gif" xmlns:tb="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math	0.4	2
60	Ground-state energy of an s-state model of the inhomogeneous electron liquid in relation to an exactly solvable model of He with additional radial correlation. Physics and Chemistry of Liquids, 2014, 52, 571-575.	1.2	2
61	A Note on Beukers's and Related Double Integrals. American Mathematical Monthly, 2019, 126, 361-363.	0.3	2
62	Evaluations of a continued fraction of Ramanujan. Rendiconti Del Seminario Matematico Dell 'Universita' Di Padova/Mathematical Journal of the University of Padova, 2015, 133, 1-10.	0.5	2
63	Spreading of a viscous drop on a smooth surface—Extension of Strella's analysis. Journal of Applied Physics, 1975, 46, 2327-2328.	2.5	1
64	Quantum well electron dynamics in a parallel magnetic field., 0,,.		1
65	Proposed interpretation of the transverse magnetic field dependence of the melting temperature <i>T</i> _m (<i>B</i>) of a two-dimensional one-component plasma driven by logarithmic interactions. Phase Transitions, 2012, 85, 1018-1021.	1.3	1
66	On quadratic Gauss sums and variations thereof. Cogent Mathematics, 2015, 2, 1021187.	0.4	1
67	Diffusion of Oligonucleotides from within Iron rossâ€Linked, Polyelectrolyteâ€Modified Alginate Beads: A Model System for Drug Release. ChemPhysChem, 2016, 17, 926-926.	2.1	1
68	Symmetries of certain double integrals related to Hall effect devices. Ramanujan Journal, 2020, 53, 39-48.	0.7	1
69	Problems for Solution: 4947-4952. American Mathematical Monthly, 1961, 68, 181.	0.3	0
70	4948. American Mathematical Monthly, 1962, 69, 240.	0.3	0
71	A Note on Abe's Theory of Paramagnetism. Progress of Theoretical Physics, 1964, 31, 718-718.	2.0	0
72	A Definite Integral. SIAM Review, 1967, 9, 121-121.	9.5	0

#	Article	IF	CITATIONS
73	5510. American Mathematical Monthly, 1968, 75, 793.	0.3	O
74	Another Definite Integral (M. L. Glasser). SIAM Review, 1985, 27, 254-254.	9.5	0
75	A method for evaluating laplace transforms and other integrals. Integral Transforms and Special Functions, 1997, 5, 161-184.	1.2	0
76	11036. American Mathematical Monthly, 2003, 110, 743.	0.3	0
77	11020. American Mathematical Monthly, 2003, 110, 542.	0.3	0
78	The effect of confinement on the hyperfine exchange interaction. Journal of Physics Condensed Matter, 2003, 15, 8673-8677.	1.8	0
79	Analysis of Electron Energy States in a Thin Quantum Well in a Parallel Magnetic Field. IEEE Nanotechnology Magazine, 2005, 4, 57-58.	2.0	0
80	11148. American Mathematical Monthly, 2005, 112, 366.	0.3	0
81	Electron tunneling/scattering through a QPC saddle potential in crossed electric and magnetic fields. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 301-303.	0.8	0
82	Exchange energy for two closed shells generated by a bare Coulomb potential energy \hat{a}^2 in the limit of large Z, in two dimensions. Journal of Mathematical Chemistry, 2010, 47, 1313-1322.	1.5	0
83	Analytic structure of ground-state energies and wave functions for the inhomogeneous electron liquid in non-relativistic He-like atomic ions with nuclear charge <i>Ze</i> . Physics and Chemistry of Liquids, 2012, 50, 389-398.	1.2	0
84	Weak harmonic confinement of the quintet solution of a Moshinsky atom with 4 electrons. Journal of Mathematical Chemistry, 2013, 51, 1515-1520.	1.5	0
85	Relativistic ground state of a hydrogenlike molecular ion. Physical Review A, 2014, 89, .	2.5	0
86	A Technique in Contour Integration. American Mathematical Monthly, 2014, 121, 447.	0.3	0
87	Quantum mechanics of a simulated trihydrogen dication. Journal of Mathematical Chemistry, 2014, 52, 2119-2127.	1.5	0
88	Differential equation for the ground-state density of a model spin-compensated atom in an external potential. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 644-645.	2.1	0
89	On Morrison's definite integral. Aequationes Mathematicae, 2015, 89, 1241-1250.	0.8	0
90	Conjectures on the evaluation of certain functions with algebraic properties. Journal of Number Theory, 2015, 155, 63-84.	0.4	0

#	Article	IF	CITATIONS
91	Asymptotics and exact formulas for Zagier polynomials. Research in Number Theory, 2016, 2, 1.	0.4	0
92	A note on the Moll–Arias de Reyna integral. Ramanujan Journal, 2020, 51, 329-332.	0.7	0
93	Integrals and Series Resulting from Two Sampling Theorems. Sampling Theory in Signal and Information Processing, 2006, 5, 89-97.	0.2	O