List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2988956/publications.pdf Version: 2024-02-01

ADAM R RENSIO

#	Article	IF	CITATIONS
1	Pharmacological brake-release of mRNA translation enhances cognitive memory. ELife, 2013, 2, e00498.	6.0	541
2	Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Research, 2015, 116, 76-84.	4.1	513
3	Drug discovery and development for neglected parasitic diseases. Nature Chemical Biology, 2006, 2, 701-710.	8.0	296
4	USP7 small-molecule inhibitors interfere with ubiquitin binding. Nature, 2017, 550, 534-538.	27.8	258
5	Pharmacological dimerization and activation of the exchange factor eIF2B antagonizes the integrated stress response. ELife, 2015, 4, e07314.	6.0	212
6	Drug Discovery for Schistosomiasis: Hit and Lead Compounds Identified in a Library of Known Drugs by Medium-Throughput Phenotypic Screening. PLoS Neglected Tropical Diseases, 2009, 3, e478.	3.0	195
7	Ceapins are a new class of unfolded protein response inhibitors, selectively targeting the ATF6α branch. ELife, 2016, 5, .	6.0	144
8	Structure of the nucleotide exchange factor eIF2B reveals mechanism of memory-enhancing molecule. Science, 2018, 359, .	12.6	143
9	Recent developments in the identification of novel oxazolidinone antibacterial agents. Bioorganic and Medicinal Chemistry, 2006, 14, 4227-4240.	3.0	127
10	A reactivity-based probe of the intracellular labile ferrous iron pool. Nature Chemical Biology, 2016, 12, 680-685.	8.0	122
11	In vivo bioluminescence imaging of labile iron accumulation in a murine model of <i>Acinetobacter baumannii</i> infection. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12669-12674.	7.1	100
12	Cilia-Associated Oxysterols Activate Smoothened. Molecular Cell, 2018, 72, 316-327.e5.	9.7	100
13	High-throughput matrix screening identifies synergistic and antagonistic antimalarial drug combinations. Scientific Reports, 2015, 5, 13891.	3.3	92
14	A High-Throughput Functional Screen Identifies Small Molecule Regulators of Temperature- and Mechano-Sensitive K _{2P} Channels. ACS Chemical Biology, 2013, 8, 1841-1851.	3.4	86
15	Divergent Modes of Enzyme Inhibition in a Homologous Structureâ^'Activity Series. Journal of Medicinal Chemistry, 2009, 52, 5005-5008.	6.4	84
16	Ras Binder Induces a Modified Switch-II Pocket in GTP and GDP States. Cell Chemical Biology, 2017, 24, 1455-1466.e14.	5.2	78
17	Ligand-Induced Proton Transfer and Low-Barrier Hydrogen Bond Revealed by X-ray Crystallography. Journal of the American Chemical Society, 2015, 137, 8086-8095.	13.7	74
18	Novel non-peptidic vinylsulfones targeting the S2 and S3 subsites of parasite cysteine proteases. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6218-6221.	2.2	56

#	Article	IF	CITATIONS
19	Mining a Cathepsin Inhibitor Library for New Antiparasitic Drug Leads. PLoS Neglected Tropical Diseases, 2011, 5, e1023.	3.0	44
20	Different 2-Aminothiazole Therapeutics Produce Distinct Patterns of Scrapie Prion Neuropathology in Mouse Brains. Journal of Pharmacology and Experimental Therapeutics, 2015, 355, 2-12.	2.5	43
21	Conformational Constraint in Oxazolidinone Antibacterials. Synthesis and Structureâ Activity Studies of (Azabicyclo[3.1.0]hexylphenyl)oxazolidinones. Journal of Medicinal Chemistry, 2005, 48, 5009-5024.	6.4	41
22	Protein and Chemical Determinants of BL-1249 Action and Selectivity for K _{2P} Channels. ACS Chemical Neuroscience, 2018, 9, 3153-3165.	3.5	40
23	Hsp90 Inhibitors as New Leads To Target Parasitic Diarrheal Diseases. Antimicrobial Agents and Chemotherapy, 2014, 58, 4138-4144.	3.2	39
24	Measuring Dynamic Changes in the Labile Iron Pool in Vivo with a Reactivity-Based Probe for Positron Emission Tomography. ACS Central Science, 2019, 5, 727-736.	11.3	38
25	Investigating the Antimalarial Action of 1,2,4-Trioxolanes with Fluorescent Chemical Probes. Journal of Medicinal Chemistry, 2011, 54, 8207-8213.	6.4	36
26	Structure-Based Design of Potent and Ligand-Efficient Inhibitors of CTX-M Class A β-Lactamase. Journal of Medicinal Chemistry, 2012, 55, 2163-2172.	6.4	35
27	A Novel Tumor-Activated Prodrug Strategy Targeting Ferrous Iron Is Effective in Multiple Preclinical Cancer Models. Journal of Medicinal Chemistry, 2016, 59, 11161-11170.	6.4	35
28	Antimalarial Drug Discovery: From Quinine to the Dream of Eradication. ACS Medicinal Chemistry Letters, 2013, 4, 1126-1128.	2.8	34
29	Chemical–biological characterization of a cruzain inhibitor reveals a second target and a mammalian off-target. Beilstein Journal of Organic Chemistry, 2013, 9, 15-25.	2.2	34
30	Zebrafish studies identify serotonin receptors mediating antiepileptic activity in Dravet syndrome. Brain Communications, 2019, 1, fcz008.	3.3	34
31	Reactivity-Based Probe of the Iron(II)-Dependent Interactome Identifies New Cellular Modulators of Ferroptosis. Journal of the American Chemical Society, 2020, 142, 19085-19093.	13.7	32
32	cAMP signaling regulates DNA hydroxymethylation by augmenting the intracellular labile ferrous iron pool. ELife, 2017, 6, .	6.0	31
33	Antibacterial oxazolidinones: emerging structure–toxicity relationships. Expert Review of Anti-Infective Therapy, 2010, 8, 565-574.	4.4	30
34	Mechanistic and Structural Understanding of Uncompetitive Inhibitors of Caspase-6. PLoS ONE, 2012, 7, e50864.	2.5	30
35	A Fragmenting Hybrid Approach for Targeted Delivery of Multiple Therapeutic Agents to the Malaria Parasite. ChemMedChem, 2011, 6, 415-419.	3.2	28
36	Heteroaryl Phosphonates as Noncovalent Inhibitors of Both Serine- and Metallocarbapenemases. Journal of Medicinal Chemistry, 2019, 62, 8480-8496.	6.4	28

#	Article	IF	CITATIONS
37	Lead Identification to Clinical Candidate Selection: Drugs for Chagas Disease. Journal of Biomolecular Screening, 2015, 20, 101-111.	2.6	27
38	Efficient and Stereocontrolled Synthesis of 1,2,4-Trioxolanes Useful for Ferrous Iron-Dependent Drug Delivery. Organic Letters, 2014, 16, 5776-5779.	4.6	26
39	Tailoring Small Molecules for an Allosteric Site on Procaspaseâ€6. ChemMedChem, 2014, 9, 73-77.	3.2	25
40	Drug Delivery to the Malaria Parasite Using an Arterolane‣ike Scaffold. ChemMedChem, 2015, 10, 47-51.	3.2	25
41	Novel compounds lowering the cellular isoform of the human prion protein in cultured human cells. Bioorganic and Medicinal Chemistry, 2014, 22, 1960-1972.	3.0	24
42	Cyanopyrrolidine Inhibitors of Ubiquitin Specific Protease 7 Mediate Desulfhydration of the Active-Site Cysteine. ACS Chemical Biology, 2020, 15, 1392-1400.	3.4	22
43	Synthesis and structure–activity studies of antibacterial oxazolidinones containing dihydrothiopyran or dihydrothiazine C-rings. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 3475-3478.	2.2	21
44	Ferronostics: Measuring Tumoral Ferrous Iron with PET to Predict Sensitivity to Iron-Targeted Cancer Therapies. Journal of Nuclear Medicine, 2021, 62, jnumed.120.252460.	5.0	21
45	Ferrous Iron-Dependent Pharmacology. Trends in Pharmacological Sciences, 2021, 42, 7-18.	8.7	21
46	A zebrafish screen reveals Renin-angiotensin system inhibitors as neuroprotective via mitochondrial restoration in dopamine neurons. ELife, 2021, 10, .	6.0	21
47	Drug discovery for neglected tropical diseases at the Sandler Center. Future Medicinal Chemistry, 2011, 3, 1279-1288.	2.3	20
48	Antileishmanial Activity of Disulfiram and Thiuram Disulfide Analogs in an <i>Ex Vivo</i> Model System Is Selectively Enhanced by the Addition of Divalent Metal Ions. Antimicrobial Agents and Chemotherapy, 2015, 59, 6463-6470.	3.2	20
49	Ferrous iron-dependent drug delivery enables controlled and selective release of therapeutic agents in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18244-18249.	7.1	19
50	A Liquid Chromatography/Mass Spectrometry Method for Screening Disulfide Tethering Fragments. SLAS Discovery, 2018, 23, 183-192.	2.7	19
51	Antimalarial Trioxolanes with Superior Drug-Like Properties and In Vivo Efficacy. ACS Infectious Diseases, 2020, 6, 1827-1835.	3.8	19
52	Fragment-based inhibitor discovery against β-lactamase. Future Medicinal Chemistry, 2014, 6, 413-427.	2.3	18
53	Active-Site Druggability of Carbapenemases and Broad-Spectrum Inhibitor Discovery. ACS Infectious Diseases, 2019, 5, 1013-1021.	3.8	18
54	Enantioselective Synthesis and in Vivo Evaluation of Regioisomeric Analogues of the Antimalarial Arterolane. Journal of Medicinal Chemistry, 2017, 60, 6400-6407.	6.4	17

#	Article	IF	CITATIONS
55	Tetrafluorophenoxymethyl ketone cruzain inhibitors with improved pharmacokinetic properties as therapeutic leads for Chagas' disease. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4834-4837.	2.2	15
56	Ferrous iron–activatable drug conjugate achieves potent MAPK blockade in <i>KRAS</i> -driven tumors. Journal of Experimental Medicine, 2022, 219, .	8.5	15
57	A distal methyl substituent attenuates mitochondrial protein synthesis inhibition in oxazolidinone antibacterials. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5036-5040.	2.2	14
58	Ferrous iron-dependent delivery of therapeutic agents to the malaria parasite. Future Medicinal Chemistry, 2012, 4, 2241-2249.	2.3	14
59	Broad-Spectrum Allosteric Inhibition of Herpesvirus Proteases. Biochemistry, 2014, 53, 4648-4660.	2.5	14
60	A Fragment-Based Ligand Screen Against Part of a Large Protein Machine: The ND1 Domains of the AAA+ ATPase p97/VCP. Journal of Biomolecular Screening, 2015, 20, 788-800.	2.6	14
61	Trioxolane-Mediated Delivery of Mefloquine Limits Brain Exposure in a Mouse Model of Malaria. ACS Medicinal Chemistry Letters, 2015, 6, 1145-1149.	2.8	14
62	The Echinocandins: Total and Semi-Synthetic Approaches in Antifungal Drug Discovery. Anti-Infective Agents in Medicinal Chemistry, 2007, 6, 201-212.	0.6	13
63	Structure–Activity Studies of Bisâ€ <i>O</i> â€Arylglycolamides: Inhibitors of the Integrated Stress Response. ChemMedChem, 2016, 11, 870-880.	3.2	13
64	Allosteric Inhibitors, Crystallography, and Comparative Analysis Reveal Network of Coordinated Movement across Human Herpesvirus Proteases. Journal of the American Chemical Society, 2017, 139, 11650-11653.	13.7	13
65	Identification and Optimization of Thienopyridine Carboxamides as Inhibitors of HIV Regulatory Complexes. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	12
66	Toward a Ferrous Iron-Cleavable Linker for Antibody–Drug Conjugates. Molecular Pharmaceutics, 2018, 15, 2054-2059.	4.6	12
67	Emerging role of ferrous iron in bacterial growth and host–pathogen interaction: New tools for chemical (micro)biology and antibacterial therapy. Current Opinion in Chemical Biology, 2021, 61, 170-178.	6.1	12
68	Antibacterial Spectrum of a Tetrazole-Based Reversible Inhibitor of Serine β-Lactamases. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	11
69	Activation of Caspase-6 Is Promoted by a Mutant Huntingtin Fragment and Blocked by an Allosteric Inhibitor Compound. Cell Chemical Biology, 2019, 26, 1295-1305.e6.	5.2	10
70	Druggable Hot Spots in the Schistosomiasis Cathepsin B1 Target Identified by Functional and Binding Mode Analysis of Potent Vinyl Sulfone Inhibitors. ACS Infectious Diseases, 2021, 7, 1077-1088.	3.8	9
71	An empirical study of amide–heteroarene π-stacking interactions using reversible inhibitors of a bacterial serine hydrolase. Organic Chemistry Frontiers, 2019, 6, 1749-1756.	4.5	8
72	Oscillatory cAMP signaling rapidly alters H3K4 methylation. Life Science Alliance, 2020, 3, e201900529.	2.8	7

#	Article	IF	CITATIONS
73	Targeting Mobilization of Ferrous Iron in <i>Pseudomonas aeruginosa</i> Infection with an Iron(II)-Caged LpxC Inhibitor. ACS Infectious Diseases, 2019, 5, 1366-1375.	3.8	6
74	Pyrvinium Pamoate and Structural Analogs Are Early Macrofilaricide Leads. Pharmaceuticals, 2022, 15, 189.	3.8	4
75	Inhibiting a dynamic viral protease by targeting a non-catalytic cysteine. Cell Chemical Biology, 2022, 29, 785-798.e19.	5.2	4
76	Expanded scope of Griesbaum co-ozonolysis for the preparation of structurally diverse sensors of ferrous iron. RSC Advances, 2021, 11, 34338-34342.	3.6	3
77	Mutation of the conserved Aspâ€Asp pair impairs the structure, function, and inhibition of CTXâ€M Class A βâ€lactamase. FEBS Letters, 2021, 595, 2981-2994.	2.8	2
78	Structure-Based Ligand Design Targeting <i>Pseudomonas aeruginosa</i> LpxA in Lipid A Biosynthesis. ACS Infectious Diseases, 2022, 8, 1231-1240.	3.8	2
79	Inside Cover: A Fragmenting Hybrid Approach for Targeted Delivery of Multiple Therapeutic Agents to the Malaria Parasite (ChemMedChem 3/2011). ChemMedChem, 2011, 6, 382-382.	3.2	0
80	Exploiting KRAS-Driven Ferroaddiction in Cancer Through Ferrous Iron-Activatable Drug Conjugates (FeADC). SSRN Electronic Journal, 0, , .	0.4	0
81	Systematic Exploration of Passive Permeability in Tetrapeptides with Hydrogen–Bond Accepting Amino Acid Side Chains. ChemMedChem, 0, , .	3.2	0