Steven A Belinsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2988933/publications.pdf

Version: 2024-02-01

83 papers 6,169 citations

41 h-index

81434

78623 77 g-index

85 all docs

85 docs citations

85 times ranked 7995 citing authors

#	Article	IF	CITATIONS
1	Voltage and e-liquid composition affect nicotine deposition within the oral cavity and carbonyl formation. Tobacco Control, 2021, 30, 485-491.	1.8	16
2	Smoke Chemistry, In Vitro Cytotoxicity, and Genotoxicity Demonstrates Enhanced Toxicity of Cigarillos Compared With Cigarettes. Toxicological Sciences, 2021, 180, 122-135.	1.4	4
3	Chromatin remodeling by the histone methyltransferase EZH2 drives lung pre-malignancy and is a target for cancer prevention. Clinical Epigenetics, 2021, 13, 44.	1.8	11
4	Comparative Genotoxicity and Mutagenicity of Cigarette, Cigarillo, and Shisha Tobacco Products in Epithelial and Cardiac Cells. Toxicological Sciences, 2021, 184, 67-82.	1.4	3
5	Inhalation delivery dramatically improves the efficacy of topotecan for the treatment of local and distant lung cancer. Drug Delivery, 2021, 28, 767-775.	2.5	8
6	Cytotoxicity and Genotoxicity of E-Cigarette Generated Aerosols Containing Diverse Flavoring Products and Nicotine in Oral Epithelial Cell Lines. Toxicological Sciences, 2021, 179, 220-228.	1.4	22
7	Identification of novel epigenetic abnormalities as sputum biomarkers for lung cancer risk among smokers and COPD patients. Lung Cancer, 2020, 146, 189-196.	0.9	9
8	5-Azacytidine inhaled dry powder formulation profoundly improves pharmacokinetics and efficacy for lung cancer therapy through genome reprogramming. British Journal of Cancer, 2020, 122, 1194-1204.	2.9	12
9	DNA-PKc deficiency drives pre-malignant transformation by reducing DNA repair capacity in concert with reprogramming the epigenome in human bronchial epithelial cells. DNA Repair, 2019, 79, 1-9.	1.3	6
10	p53-Suppressed Oncogene TET1 Prevents Cellular Aging in Lung Cancer. Cancer Research, 2019, 79, 1758-1768.	0.4	38
11	Gene Promoter Hypermethylation Detected in Sputum Predicts FEV ₁ Decline and All-Cause Mortality in Smokers. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 187-196.	2.5	10
12	Dietary Nutrient Intake, Ethnicity, and Epigenetic Silencing of Lung Cancer Genes Detected in Sputum in New Mexican Smokers. Cancer Prevention Research, 2018, 11, 93-102.	0.7	9
13	Inhalation delivery of topotecan is superior to intravenous exposure for suppressing lung cancer in a preclinical model. Drug Delivery, 2018, 25, 1127-1136.	2.5	14
14	Common cancer-driver mutations and their association with abnormally methylated genes in lung adenocarcinoma from never-smokers. Lung Cancer, 2018, 123, 99-106.	0.9	20
15	ANK1 Methylation regulates expression of MicroRNA-486-5p and discriminates lung tumors by histology and smoking status. Cancer Letters, 2017, 410, 191-200.	3.2	31
16	Gene Methylation Biomarkers in Sputum and Plasma as Predictors for Lung Cancer Recurrence. Cancer Prevention Research, 2017, 10, 635-640.	0.7	17
17	Early Detection of Lung Cancer Using DNA Promoter Hypermethylation in Plasma and Sputum. Clinical Cancer Research, 2017, 23, 1998-2005.	3.2	193
18	Gene methylation biomarkers in sputum as a classifier for lung cancer risk. Oncotarget, 2017, 8, 63978-63985.	0.8	19

#	Article	IF	Citations
19	TSC2 Deficiency Unmasks a Novel Necrosis Pathway That Is Suppressed by the RIP1/RIP3/MLKL Signaling Cascade. Cancer Research, 2016, 76, 7130-7139.	0.4	9
20	miR-196b Is Epigenetically Silenced during the Premalignant Stage of Lung Carcinogenesis. Cancer Research, 2016, 76, 4741-4751.	0.4	31
21	Epigenetic Repression of CCDC37 and MAP1B Links Chronic Obstructive Pulmonary Disease to Lung Cancer. Journal of Thoracic Oncology, 2015, 10, 1181-1188.	0.5	38
22	Unmasking the Lung Cancer Epigenome. Annual Review of Physiology, 2015, 77, 453-474.	5. 6	49
23	Epigenetic Change (GATA-4 Gene Methylation) Is Associated With Health Status in Chronic Obstructive Pulmonary Disease. Biological Research for Nursing, 2015, 17, 191-198.	1.0	14
24	Implication of a Chromosome 15q15.2 Locus in Regulating UBR1 and Predisposing Smokers to MGMT Methylation in Lung. Cancer Research, 2015, 75, 3108-3117.	0.4	7
25	15q12 Variants, Sputum Gene Promoter Hypermethylation, and Lung Cancer Risk: A GWAS in Smokers. Journal of the National Cancer Institute, 2015, 107, .	3.0	16
26	Genome-wide unmasking of epigenetically silenced genes in lung adenocarcinoma from smokers and never smokers. Carcinogenesis, 2014, 35, 1248-1257.	1.3	36
27	GATA2 is Epigenetically Repressed in Human and Mouse Lung Tumors and Is Not Requisite for Survival of KRAS Mutant Lung Cancer. Journal of Thoracic Oncology, 2014, 9, 784-793.	0.5	24
28	Increased methylation of lung cancer-associated genes in sputum DNA of former smokers with chronic mucous hypersecretion. Respiratory Research, 2014, 15, 2.	1.4	23
29	MUC1 in Macrophage: Contributions to Cigarette Smoke–Induced Lung Cancer. Cancer Research, 2014, 74, 460-470.	0.4	22
30	SGlâ \in 10 and entinostat therapy reduces lung tumor burden and reprograms the epigenome. International Journal of Cancer, 2014, 135, 2223-2231.	2.3	47
31	Functional Identification of Cancer-Specific Methylation of <i>CDO1</i> , <i>HOXA9</i> , and <i>TAC1</i> for the Diagnosis of Lung Cancer. Clinical Cancer Research, 2014, 20, 1856-1864.	3.2	69
32	Genetic variation in SIRT1 affects susceptibility of lung squamous cell carcinomas in former uranium miners from the Colorado plateau. Carcinogenesis, 2013, 34, 1044-1050.	1.3	12
33	Native American Ancestry Affects the Risk for Gene Methylation in the Lungs of Hispanic Smokers from New Mexico. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 1110-1116.	2.5	24
34	Defining a Gene Promoter Methylation Signature in Sputum for Lung Cancer Risk Assessment. Clinical Cancer Research, 2012, 18, 3387-3395.	3.2	96
35	HIF1 $\hat{l}\pm$ regulated expression of XPA contributes to cisplatin resistance in lung cancer. Carcinogenesis, 2012, 33, 1187-1192.	1.3	51
36	Sex-specific association of sequence variants in CBS and MTRR with risk for promoter hypermethylation in the lung epithelium of smokers. Carcinogenesis, 2012, 33, 1542-1547.	1.3	11

#	Article	IF	CITATIONS
37	Genetic Determinants for Promoter Hypermethylation in the Lungs of Smokers: A Candidate Gene-Based Study. Cancer Research, 2012, 72, 707-715.	0.4	22
38	Low-Dose Gamma-Radiation Inhibits Benzo[a]pyrene-Induced Lung Adenoma Development in A/J Mice. Dose-Response, 2012, 10, dose-response.1.	0.7	15
39	Methylated Genes in Sputum Among Older Smokers With Asthma. Chest, 2012, 142, 425-431.	0.4	35
40	Differential Epigenetic Regulation of TOX Subfamily High Mobility Group Box Genes in Lung and Breast Cancers. PLoS ONE, 2012, 7, e34850.	1.1	52
41	A phase I study of 5-azacytidine and erlotinib in advanced solid tumor malignancies. Cancer Chemotherapy and Pharmacology, 2012, 69, 547-554.	1.1	56
42	New Mexican Hispanic Smokers Have Lower Odds of Chronic Obstructive Pulmonary Disease and Less Decline in Lung Function Than Non-Hispanic Whites. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 1254-1260.	2.5	71
43	EMT and Stem Cell–Like Properties Associated with miR-205 and miR-200 Epigenetic Silencing Are Early Manifestations during Carcinogen-Induced Transformation of Human Lung Epithelial Cells. Cancer Research, 2011, 71, 3087-3097.	0.4	267
44	Combination Therapy with Vidaza and Entinostat Suppresses Tumor Growth and Reprograms the Epigenome in an Orthotopic Lung Cancer Model. Cancer Research, 2011, 71, 454-462.	0.4	70
45	The A/G Allele of Rs16906252 Predicts for <i>MGMT</i> Methylation and Is Selectively Silenced in Premalignant Lesions from Smokers and in Lung Adenocarcinomas. Clinical Cancer Research, 2011, 17, 2014-2023.	3.2	47
46	Combination Epigenetic Therapy Has Efficacy in Patients with Refractory Advanced Non–Small Cell Lung Cancer. Cancer Discovery, 2011, 1, 598-607.	7.7	596
47	Wood Smoke Exposure and Gene Promoter Methylation Are Associated with Increased Risk for COPD in Smokers. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 1098-1104.	2.5	117
48	Multivitamins, Folate, and Green Vegetables Protect against Gene Promoter Methylation in the Aerodigestive Tract of Smokers. Cancer Research, 2010, 70, 568-574.	0.4	76
49	Concomitant promoter methylation of multiple genes in lung adenocarcinomas from current, former and never smokers. Carcinogenesis, 2009, 30, 1132-1138.	1.3	64
50	Radiation-Stimulated Epigenetic Reprogramming of Adaptive-Response Genes in the Lung: An Evolutionary Gift for Mounting Adaptive Protection against Lung Cancer. Dose-Response, 2009, 7, dose-response.0.	0.7	43
51	Rosiglitazone prevents the progression of preinvasive lung cancer in a murine model. Carcinogenesis, 2009, 30, 2095-2099.	1.3	39
52	Dual promoter regulation of death-associated protein kinase gene leads to differentially silenced transcripts by methylation in cancer. Carcinogenesis, 2009, 30, 2023-2030.	1.3	20
53	DNA Methylation biomarkers to assess therapy and chemoprevention for non-small cell lung cancer. Nutrition Reviews, 2008, 66, S24-S26.	2.6	8
54	Carcinogen-Induced Gene Promoter Hypermethylation Is Mediated by DNMT1 and Causal for Transformation of Immortalized Bronchial Epithelial Cells. Cancer Research, 2008, 68, 9005-9014.	0.4	128

#	Article	IF	Citations
55	Silencing of <i>DUOX</i> NADPH Oxidases by Promoter Hypermethylation in Lung Cancer. Cancer Research, 2008, 68, 1037-1045.	0.4	136
56	Promoter Methylation of Genes in and around the Candidate Lung Cancer Susceptibility Locus <i>6q23-25</i> . Cancer Research, 2008, 68, 1707-1714.	0.4	101
57	Double-Strand Break Damage and Associated DNA Repair Genes Predispose Smokers to Gene Methylation. Cancer Research, 2008, 68, 3049-3056.	0.4	57
58	Mining the Epigenome for Methylated Genes in Lung Cancer. Proceedings of the American Thoracic Society, 2008, 5, 806-810.	3.5	33
59	Radiation-Induced Lung Adenocarcinoma is Associated with Increased Frequency of Genes Inactivated by Promoter Hypermethylation. Radiation Research, 2007, 168, 409-414.	0.7	27
60	Nested multigene MSP/DHPLC method for analyzing promoter hypermethylation status in clinical samples. BioTechniques, 2006, 40, 40-48.	0.8	6
61	Promoter Hypermethylation of Multiple Genes in Sputum Precedes Lung Cancer Incidence in a High-Risk Cohort. Cancer Research, 2006, 66, 3338-3344.	0.4	363
62	Gene Promoter Hypermethylation in Mouse Lung Tumors. Molecular Cancer Research, 2006, 4, 267-273.	1.5	38
63	Multiplicity of abnormal promoter methylation in lung adenocarcinomas from smokers and never smokers. International Journal of Cancer, 2005, 114, 400-405.	2.3	72
64	Silencing of genes by promoter hypermethylation: key event in rodent and human lung cancer. Carcinogenesis, 2005, 26, 1481-1487.	1.3	116
65	Gene Promoter Methylation in Plasma and Sputum Increases with Lung Cancer Risk. Clinical Cancer Research, 2005, 11, 6505-6511.	3.2	212
66	Life-span inhalation exposure to mainstream cigarette smoke induces lung cancer in B6C3F1 mice through genetic and epigenetic pathways. Carcinogenesis, 2005, 26, 1999-2009.	1.3	85
67	Aberrant Promoter Hypermethylation of the Death-Associated Protein Kinase Gene Is Early and Frequent in Murine Lung Tumors Induced by Cigarette Smoke and Tobacco Carcinogens. Cancer Research, 2004, 64, 3844-3848.	0.4	101
68	Plutonium targets the p16 gene for inactivation by promoter hypermethylation in human lung adenocarcinoma. Carcinogenesis, 2004, 25, 1063-1067.	1.3	81
69	Gene-promoter hypermethylation as a biomarker in lung cancer. Nature Reviews Cancer, 2004, 4, 707-717.	12.8	489
70	Carcinogen exposure differentially modulates RAR-Â promoter hypermethylation, an early and frequent event in mouse lung carcinogenesis. Carcinogenesis, 2003, 25, 623-629.	1.3	57
71	Aberrant promoter methylation of the transcription factor genes PAX5 alpha and beta in human cancers. Cancer Research, 2003, 63, 4620-5.	0.4	83
72	Promoter hypermethylation of the O6-methylguanine-DNA methyltransferase gene: more common in lung adenocarcinomas from never-smokers than smokers and associated with tumor progression. Cancer Research, 2003, 63, 4842-8.	0.4	84

#	Article	IF	CITATIONS
73	Inhibition of DNA methylation and histone deacetylation prevents murine lung cancer. Cancer Research, 2003, 63, 7089-93.	0.4	211
74	Aberrant CpG island methylation of the p16INK4a and estrogen receptor genes in rat lung tumors induced by particulate carcinogens. Carcinogenesis, 2002, 23, 335-339.	1.3	83
75	Glutathione S-transferase P1 and NADPH quinone oxidoreductase polymorphisms are associated with aberrant promoter methylation of P16(INK4a) and O(6)-methylguanine-DNA methyltransferase in sputum. Cancer Research, 2002, 62, 2248-52.	0.4	42
76	Aberrant promoter methylation in bronchial epithelium and sputum from current and former smokers. Cancer Research, 2002, 62, 2370-7.	0.4	344
77	The XRCC1 399 glutamine allele is a risk factor for adenocarcinoma of the lung. Mutation Research DNA Repair, 2001, 461, 273-278.	3.8	178
78	Aberrant Methylation of Gene Promoters in Cancer-Concepts, Misconcepts, and Promise. Journal of the National Cancer Institute, 2000, 92, 1460-1461.	3.0	131
79	Role of the Cytosine Dna-Methyltransferase andp16nk4aGenes in the Development of Mouse Lung Tumors. Experimental Lung Research, 1998, 24, 463-479.	0.5	28
80	An improved method for the isolation of type II and clara cells from mice. In Vitro Cellular and Developmental Biology - Animal, 1995, 31, 361-366.	0.7	24
81	Low frequency of alterations in p53, K-ras, and mdm2 in rat lung neoplasms induced by diesel exhaust or carbon black. Carcinogenesis, 1995, 16, 1215-1221.	1.3	34
82	Analysis of K-ras p53 and c-raf-1 mutations in beryllium-induced rat lung tumors. Carcinogenesis, 1994, 15, 257-262.	1.3	67
83	Cell specific differences in O6-methylguanine-DNA methyltransferase activity and removal of O6-methylguanine in rat pulmonary cells. Carcinogenesis, 1988, 9, 2053-2058.	1.3	57