
Ida-Marie HÃ,yvik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2988714/publications.pdf Version: 2024-02-01

ΙΠΛ-ΜΑΡΙΕ ΗΑ ΥΛΙΚ

#	Article	IF	CITATIONS
1	The effect of midbond functions on interaction energies computed using <scp>MP2</scp> and <scp>CCSD</scp> (T). Journal of Computational Chemistry, 2022, 43, 121-131.	3.3	4
2	Unimolecular Decomposition Reactions of Picric Acid and Its Methylated Derivatives─A DFT Study. Journal of Physical Chemistry A, 2022, 126, 2645-2657.	2.5	5
3	Describing ground and excited state potential energy surfaces for molecular photoswitches using coupled cluster models. Journal of Computational Chemistry, 2021, 42, 1419-1429.	3.3	4
4	Linear-Scaling Implementation of Multilevel Hartree–Fock Theory. Journal of Chemical Theory and Computation, 2021, 17, 7416-7427.	5.3	4
5	Convergence acceleration for the multilevel Hartree–Fock model. Molecular Physics, 2020, 118, 1626929.	1.7	11
6	The spectrum of the atomic orbital overlap matrix and the locality of the virtual electronic density matrix. Molecular Physics, 2020, 118, e1765034.	1.7	7
7	<i>e T</i> 1.0: An open source electronic structure program with emphasis on coupled cluster and multilevel methods. Journal of Chemical Physics, 2020, 152, 184103.	3.0	68
8	Generalising localisation schemes of orthogonal orbitals to the localisation of non-orthogonal orbitals. Molecular Physics, 2017, 115, 16-25.	1.7	8
9	Density-Based Multilevel Hartree–Fock Model. Journal of Chemical Theory and Computation, 2017, 13, 5282-5290.	5.3	30
10	Tautomerization of Thymine Using Ultraviolet Light. Langmuir, 2017, 33, 9666-9672.	3.5	4
11	Correlated natural transition orbitals for core excitation energies in multilevel coupled cluster models. Journal of Chemical Physics, 2017, 146, 144109.	3.0	31
12	Characterization and Generation of Local Occupied and Virtual Hartree–Fock Orbitals. Chemical Reviews, 2016, 116, 3306-3327.	47.7	48
13	A perspective on the localizability of Hartree–Fock orbitals. Theoretical Chemistry Accounts, 2014, 133, 1.	1.4	25
14	The <scp>D</scp> alton quantum chemistry program system. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2014, 4, 269-284.	14.6	1,166
15	Local Hartree–Fock orbitals using a threeâ€ŀevel optimization strategy for the energy. Journal of Computational Chemistry, 2013, 34, 1311-1320.	3.3	10
16	The divide–expand–consolidate MP2 scheme goes massively parallel. Molecular Physics, 2013, 111, 1196-1210.	1.7	38
17	Pipek–Mezey localization of occupied and virtual orbitals. Journal of Computational Chemistry, 2013, 34, 1456-1462.	3.3	43
18	Localized orbitals from basis sets augmented with diffuse functions. Journal of Chemical Physics, 2013, 138, 204104.	3.0	9

Ida-Marie HÃ,yvik

#	Article	IF	CITATIONS
19	The divide-expand-consolidate family of coupled cluster methods: Numerical illustrations using second order MÃ,ller-Plesset perturbation theory. Journal of Chemical Physics, 2012, 136, 014105.	3.0	80
20	Orbital localization using fourth central moment minimization. Journal of Chemical Physics, 2012, 137, 224114.	3.0	71
21	MP2 energy and density for large molecular systems with internal error control using the Divide-Expand-Consolidate scheme. Physical Chemistry Chemical Physics, 2012, 14, 15706.	2.8	57
22	Trust Region Minimization of Orbital Localization Functions. Journal of Chemical Theory and Computation, 2012, 8, 3137-3146.	5.3	64
23	Potential Energy Surfaces for Vibrational Structure Calculations from a Multiresolution Adaptive Density-Guided Approach: Implementation and Test Calculations. Journal of Physical Chemistry A, 2009, 113, 8712-8723.	2.5	34
24	Convergence of the electronic density for a target region in cluster models of a NH\$\$_3\$\$ molecular crystal. Journal of Mathematical Chemistry, 0, , .	1.5	0