Lourival Jorge Mendes Neto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2988378/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hybrid films from plant and bacterial nanocellulose: mechanical and barrier properties. Nordic Pulp and Paper Research Journal, 2022, 37, 159-174.	0.7	8
2	Estudo comparativo das legislações de prevenção e combate a incêndio dos estados de Minas Gerais e Rio de Janeiro. Engineering Sciences, 2020, 8, 75-82.	0.1	0
3	Tannin-stabilized silver nanoparticles and citric acid added associated to cellulose nanofibrils: effect on film antimicrobial properties. SN Applied Sciences, 2019, 1, 1.	2.9	7
4	Urea Formaldehyde and Cellulose Nanocrystals Adhesive: Studies Applied to Sugarcane Bagasse Particleboards. Journal of Polymers and the Environment, 2018, 26, 3040-3050.	5.0	21
5	An Experimental and Theoretical Study of the Gasification of Miscanthus Briquettes in a Double-Stage Downdraft Gasifier: Syngas, Tar, and Biochar Characterization. Energies, 2018, 11, 3225.	3.1	14
6	How the surface wettability and modulus of elasticity of the Amazonian paricÃ; nanofibrils films are affected by the chemical changes of the natural fibers. European Journal of Wood and Wood Products, 2018, 76, 1581-1594.	2.9	18
7	The effect of surface modifications with corona discharge in pinus and eucalyptus nanofibril films. Cellulose, 2018, 25, 5017-5033.	4.9	15
8	Impact of nanofibrillation degree of eucalyptus and Amazonian hardwood sawdust on physical properties of cellulose nanofibril films. Wood Science and Technology, 2017, 51, 1095-1115.	3.2	36
9	Thermal conductivity analysis of an ash deposit on boiler superheater. Powder Technology, 2017, 318, 329-336.	4.2	11
10	CFD modeling of combustion of sugarcane bagasse in an industrial boiler. Fuel, 2017, 193, 31-38.	6.4	36
11	Influence of cellulose viscosity and residual lignin on water absorption of nanofibril films. Procedia Engineering, 2017, 200, 155-161.	1.2	19
12	MICRO/NANOFIBRILAS CELULÓSICAS DE EUCALYPTUS EM FIBROCIMENTOS EXTRUDADOS. Cerne, 2016, 22, 59-68.	0.9	34
13	How the chemical nature of Brazilian hardwoods affects nanofibrillation of cellulose fibers and film optical quality. Cellulose, 2015, 22, 3657-3672.	4.9	54
14	Characterization and growth modeling of ash deposits in coal fired boilers. Powder Technology, 2012, 217, 61-68.	4.2	14