
Götz A Westphal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2988282/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	No inflammatory effects after acute inhalation of barium sulfate particles in human volunteers. BMC Pulmonary Medicine, 2022, 22, .	2.0	2
2	Characterization of Fiber Dust Resulting from Recycling of Carbon Fiber-Reinforced Thermoplastics (CFRP) and Their Cell Toxicity. Journal of Materials Science and Chemical Engineering, 2022, 10, 1-16.	0.4	2
3	Health effects after inhalation of micro- and nano-sized zinc oxide particles in human volunteers. Archives of Toxicology, 2021, 95, 53-65.	4.2	27
4	The effect of short silica fibers (0.3Âμm 3.2Âμm) on macrophages. Science of the Total Environment, 2021, 769, 144575.	8.0	2
5	Subtoxic cell responses to silica particles with different size and shape. Scientific Reports, 2020, 10, 21591.	3.3	23
6	Multi-walled carbon nanotubes induce stronger migration of inflammatory cells in vitro than asbestos or granular particles but a similar pattern of inflammatory mediators. Toxicology in Vitro, 2019, 58, 215-223.	2.4	14
7	A variant of the <i>CXCL11</i> gene may influence susceptibility to contact allergy, particularly in polysensitized patients. Contact Dermatitis, 2016, 75, 303-307.	1.4	19
8	Kinetics of chemotaxis, cytokine, and chemokine release of NR8383 macrophages after exposure to inflammatory and inert granular insoluble particles. Toxicology Letters, 2016, 263, 68-75.	0.8	18
9	Barium sulfate micro- and nanoparticles as bioinert reference material in particle toxicology. Nanotoxicology, 2016, 10, 1492-1502.	3.0	17
10	Combusting vegetable oils in diesel engines: the impact of unsaturated fatty acids on particle emissions and mutagenic effects of the exhaust. Archives of Toxicology, 2016, 90, 1471-1479.	4.2	10
11	Particle-induced cell migration assay (PICMA): A new in vitro assay for inflammatory particle effects based on permanent cell lines. Toxicology in Vitro, 2015, 29, 997-1005.	2.4	16
12	Amylenes Do Not Lead to Bacterial Mutagenicity in Contrast to Structurally Related Epoxides. BioMed Research International, 2014, 2014, 1-5.	1.9	0
13	Combustion of Hydrotreated Vegetable Oil and Jatropha Methyl Ester in a Heavy Duty Engine: Emissions and Bacterial Mutagenicity. Environmental Science & Technology, 2013, 47, 6038-6046.	10.0	57
14	Potential hazards associated with combustion of bio-derived versus petroleum-derived diesel fuel. Critical Reviews in Toxicology, 2012, 42, 732-750.	3.9	70
15	Mutagenicity of Diesel Engine Exhaust Is Eliminated in the Gas Phase by an Oxidation Catalyst but Only Slightly Reduced in the Particle Phase. Environmental Science & Technology, 2012, 46, 6417-6424.	10.0	24
16	Genetic factors in contact allergy-review and future goals. Contact Dermatitis, 2011, 64, 2-23.	1.4	75
17	Comment on: Implications of latency period between benzene exposure and development of leukemia—A synopsis of literature. Chemico-Biological Interactions, 2010, 186, 248-249.	4.0	4
18	Ether oxygenate additives in gasoline reduce toxicity of exhausts. Toxicology, 2010, 268, 198-203.	4.2	38

GöTZ A WESTPHAL

#	Article	IF	CITATIONS
19	Comparison of exhaust emissions and their mutagenicity from the combustion of biodiesel, vegetable oil, gas-to-liquid and petrodiesel fuels. Fuel, 2009, 88, 1064-1069.	6.4	91
20	Strong mutagenic effects of diesel engine emissions using vegetable oil as fuel. Archives of Toxicology, 2007, 81, 599-603.	4.2	73
21	Influence of fuel properties, nitrogen oxides, and exhaust treatment by an oxidation catalytic converter on the mutagenicity of diesel engine emissions. Archives of Toxicology, 2006, 80, 540-546.	4.2	35
22	Cytokine gene polymorphisms in allergiccontact dermatitis. Contact Dermatitis, 2003, 48, 93-98.	1.4	97
23	Association of allergic contact dermatitis with a promoter polymorphism in the IL16 gene. Journal of Allergy and Clinical Immunology, 2003, 112, 1191-1194.	2.9	97