Dean E Anderson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2988002/publications.pdf

Version: 2024-02-01

23 papers

1,528 citations

394421 19 h-index 642732 23 g-index

24 all docs

24 docs citations

24 times ranked 1571 citing authors

#	Article	IF	CITATIONS
1	Eddy fluxes of CO2, water vapor, and sensible heat over a deciduous forest. Boundary-Layer Meteorology, 1986, 36, 71-91.	2.3	201
2	Energy budget above a high-elevation subalpine forest in complex topography. Agricultural and Forest Meteorology, 2002, 110, 177-201.	4.8	157
3	Airflows and turbulent flux measurements in mountainous terrain. Agricultural and Forest Meteorology, 2003, 119, 1-21.	4.8	142
4	Spatial Variability of Turbulent Fluxes in the Roughness Sublayer of an Even-Aged Pine Forest. Boundary-Layer Meteorology, 1999, 93, 1-28.	2.3	111
5	Carbon sequestration studied in western U.S. mountains. Eos, 2002, 83, 445.	0.1	101
6	CO2 transport over complex terrain. Agricultural and Forest Meteorology, 2007, 145, 1-21.	4.8	93
7	THE CONTRIBUTION OF ADVECTIVE FLUXES TO NET ECOSYSTEM EXCHANGE IN A HIGHâ€ELEVATION, SUBALPINE FOREST. Ecological Applications, 2008, 18, 1379-1390.	3.8	81
8	Eddy correlation measurements of CO2, latent heat, and sensible heat fluxes over a crop surface. Boundary-Layer Meteorology, 1984, 29, 263-272.	2.3	75
9	Modeling and measuring the nocturnal drainage flow in a high-elevation, subalpine forest with complex terrain. Journal of Geophysical Research, 2005, 110, .	3.3	74
10	Estimating lakeâ€atmosphere CO ₂ exchange. Limnology and Oceanography, 1999, 44, 988-1001.	3.1	69
11	Canopy Photosynthesis and Water-Use Efficiency in a Deciduous Forest. Journal of Applied Ecology, 1987, 24, 251.	4.0	64
12	Airflows and turbulent flux measurements in mountainous terrain. Agricultural and Forest Meteorology, 2004, 125, 187-205.	4.8	54
13	Turbulence spectra of CO2, water vapor, temperature and velocity over a deciduous forest. Agricultural and Forest Meteorology, 1986, 38, 81-99.	4.8	48
14	Canopy structure and atmospheric flows in relation to the \hat{l} 13C of respired CO2 in a subalpine coniferous forest. Agricultural and Forest Meteorology, 2008, 148, 592-605.	4.8	41
15	Atmospheric Stability Effects on Wind Fields and Scalar Mixing Within and Just Above a Subalpine Forest in Sloping Terrain. Boundary-Layer Meteorology, 2011, 138, 231-262.	2.3	41
16	Eddy covariance measurement of CO2 flux to the atmosphere from an area of high volcanogenic emissions, Mammoth Mountain, California. Chemical Geology, 2001, 177, 31-42.	3.3	39
17	Turbulence spectra of CO2, water vapor, temperature and wind velocity fluctuations over a crop surface. Boundary-Layer Meteorology, 1985, 33, 1-14.	2.3	37
18	Carbon dioxide, water vapor and sensible heat exchanges of a grain sorghum canopy. Boundary-Layer Meteorology, 1986, 34, 317-331.	2.3	33

#	Article	IF	CITATIONS
19	A Multiscale and Multidisciplinary Investigation Of Ecosystem–Atmosphere CO2 Exchange Over the Rocky Mountains of Colorado. Bulletin of the American Meteorological Society, 2010, 91, 209-230.	3.3	29
20	Detailed structure of pH in hydrometeors. Environmental Science & Environmenta	10.0	12
21	A Lagrangian stochastic model for aerial spray transport above an oak forest. Agricultural and Forest Meteorology, 1995, 76, 277-291.	4.8	10
22	Kolmogorov constants for CO2, wind velocity, air temperature, and humidity fluctuations over a crop surface. Boundary-Layer Meteorology, 1984, 28, 161-167.	2.3	9
23	Deposition of Aerially Applied BT in an Oak Forest and Its Prediction with the FSCBG Model. Journal of Applied Meteorology and Climatology, 1992, 31, 1457-1466.	1.7	7