## Tahir H Tahirov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2987825/publications.pdf Version: 2024-02-01



Τλμίο Η Τλμιρον

| #  | Article                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Structural and functional insight into mismatch extension by human DNA polymerase α. Proceedings of the United States of America, 2022, 119, e2111744119.                                          | 7.1  | 8         |
| 2  | Insight into RNA–DNA primer length counting by human primosome. Nucleic Acids Research, 2022, 50,<br>6264-6270.                                                                                    | 14.5 | 15        |
| 3  | Efficient discrimination against RNA-containing primers by human DNA polymerase Îμ. Scientific Reports,<br>2022, 12, .                                                                             | 3.3  | 4         |
| 4  | Translesion activity of PrimPol on DNA with cisplatin and DNA–protein cross-links. Scientific Reports, 2021, 11, 17588.                                                                            | 3.3  | 14        |
| 5  | Replication protein A binds RNA and promotes R-loop formation. Journal of Biological Chemistry, 2020, 295, 14203-14213.                                                                            | 3.4  | 26        |
| 6  | Activity and fidelity of human DNA polymerase α depend on primer structure. Journal of Biological<br>Chemistry, 2018, 293, 6824-6843.                                                              | 3.4  | 28        |
| 7  | Iron–Sulfur Clusters in DNA Polymerases and Primases of Eukaryotes. Methods in Enzymology, 2018,<br>599, 1-20.                                                                                     | 1.0  | 32        |
| 8  | Structure and Biophysics of CBFβ/RUNX and Its Translocation Products. Advances in Experimental Medicine and Biology, 2017, 962, 21-31.                                                             | 1.6  | 10        |
| 9  | Comment on "The [4Fe4S] cluster of human DNA primase functions as a redox switch using DNA<br>charge transport― Science, 2017, 357, .                                                              | 12.6 | 12        |
| 10 | Crystal structure of the human Polïµ B-subunit in complex with the C-terminal domain of the catalytic<br>subunit. Journal of Biological Chemistry, 2017, 292, 15717-15730.                         | 3.4  | 30        |
| 11 | Elaborated Action of the Human Primosome. Genes, 2017, 8, 62.                                                                                                                                      | 2.4  | 41        |
| 12 | Insight into the Human DNA Primase Interaction with Template-Primer. Journal of Biological Chemistry, 2016, 291, 4793-4802.                                                                        | 3.4  | 60        |
| 13 | Mechanism of Concerted RNA-DNA Primer Synthesis by the Human Primosome. Journal of Biological Chemistry, 2016, 291, 10006-10020.                                                                   | 3.4  | 100       |
| 14 | Divalent ions attenuate DNA synthesis by human DNA polymerase $\hat{I}\pm$ by changing the structure of the template/primer or by perturbing the polymerase reaction. DNA Repair, 2016, 43, 24-33. | 2.8  | 16        |
| 15 | Crystal Structure of the Human Primase. Journal of Biological Chemistry, 2015, 290, 5635-5646.                                                                                                     | 3.4  | 65        |
| 16 | Crystal Structure of the Human Pol α B Subunit in Complex with the C-terminal Domain of the Catalytic<br>Subunit. Journal of Biological Chemistry, 2015, 290, 14328-14337.                         | 3.4  | 53        |
| 17 | Comparison of the kinetic parameters of the truncated catalytic subunit and holoenzyme of human<br>DNA polymerase É›. DNA Repair, 2015, 29, 16-22.                                                 | 2.8  | 9         |
| 18 | Structural basis for inhibition of DNA replication by aphidicolin. Nucleic Acids Research, 2014, 42, 14013-14021.                                                                                  | 14.5 | 104       |

TAHIR H TAHIROV

| #  | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Crystal structure of HIV-1 Tat complexed with human P-TEFb and AFF4. Cell Cycle, 2014, 13, 1788-1797.                                                                                                                                  | 2.6  | 51        |
| 20 | Crystallization and preliminary X-ray diffraction analysis of human DNA primase. Acta<br>Crystallographica Section F, Structural Biology Communications, 2014, 70, 206-210.                                                            | 0.8  | 7         |
| 21 | The C-terminal Domain of the DNA Polymerase Catalytic Subunit Regulates the Primase and Polymerase<br>Activities of the Human DNA Polymerase α-Primase Complex. Journal of Biological Chemistry, 2014, 289,<br>22021-22034.            | 3.4  | 32        |
| 22 | A novel variant of DNA polymerase ζ, Rev3ΔC, highlights differential regulation of Pol32 as a subunit of polymerase δ versus ζ in Saccharomyces cerevisiae. DNA Repair, 2014, 24, 138-149.                                             | 2.8  | 22        |
| 23 | Modulation of mutagenesis in eukaryotes by DNA replication fork dynamics and quality of nucleotide pools. Environmental and Molecular Mutagenesis, 2012, 53, 699-724.                                                                  | 2.2  | 28        |
| 24 | DNA Polymerase δ and ζ Switch by Sharing Accessory Subunits of DNA Polymerase δ. Journal of Biological<br>Chemistry, 2012, 287, 17281-17287.                                                                                           | 3.4  | 144       |
| 25 | Structure and Function of Eukaryotic DNA Polymerase δ. Sub-Cellular Biochemistry, 2012, 62, 217-236.                                                                                                                                   | 2.4  | 19        |
| 26 | Structural Basis of Ets1 Cooperative Binding to Widely Separated Sites on Promoter DNA. PLoS ONE, 2012, 7, e33698.                                                                                                                     | 2.5  | 18        |
| 27 | Inaccurate DNA Synthesis in Cell Extracts of Yeast Producing Active Human DNA Polymerase lota. PLoS<br>ONE, 2011, 6, e16612.                                                                                                           | 2.5  | 25        |
| 28 | Crystal structure of the C-terminal domain of human DNA primase large subunit. Cell Cycle, 2011, 10, 926-931.                                                                                                                          | 2.6  | 55        |
| 29 | Crystal structure of HIV-1 Tat complexed with human P-TEFb. Nature, 2010, 465, 747-751.                                                                                                                                                | 27.8 | 255       |
| 30 | Structural basis of Ets1 cooperative binding to palindromic sequences on stromelysin-1 promoter DNA. Cell Cycle, 2010, 9, 3126-3134.                                                                                                   | 2.6  | 27        |
| 31 | Crystal Structure of Mouse Elf3 C-terminal DNA-binding Domain in Complex with Type II TGF-Î <sup>2</sup> Receptor<br>Promoter DNA. Journal of Molecular Biology, 2010, 397, 278-289.                                                   | 4.2  | 24        |
| 32 | Preliminary crystallographic analysis of mouse Elf3 C-terminal DNA-binding domain in complex with<br>type II TGF-β receptor promoter DNA. Acta Crystallographica Section F: Structural Biology<br>Communications, 2009, 65, 1261-1263. | 0.7  | 4         |
| 33 | Functional mapping of the fission yeast DNA polymerase δB-subunit Cdc1 by site-directed and random pentapeptide insertion mutagenesis. BMC Molecular Biology, 2009, 10, 82.                                                            | 3.0  | 10        |
| 34 | Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol ε and a chimeric<br>origin of eukaryotic polymerases from two classes of archaeal ancestors. Biology Direct, 2009, 4, 11.                            | 4.6  | 102       |
| 35 | Crystallization and preliminary crystallographic analysis of the complex of the second and third regulatory subunits of human Pol Î'. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 822-824.          | 0.7  | 3         |
| 36 | X-ray structure of the complex of regulatory subunits of human DNA polymerase delta. Cell Cycle, 2008, 7, 3026-3036.                                                                                                                   | 2.6  | 81        |

TAHIR H TAHIROV

| #  | Article                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Structural basis for transcription elongation by bacterial RNA polymerase. Nature, 2007, 448, 157-162.                                                                                 | 27.8 | 380       |
| 38 | Compact reduced thioredoxin structure from the thermophilic bacteria Thermus thermophilus.<br>Proteins: Structure, Function and Bioinformatics, 2005, 61, 1032-1037.                   | 2.6  | 9         |
| 39 | Crystal structure of a purine/pyrimidine phosphoribosyltransferase-related protein from Thermus thermophilus HB8. Proteins: Structure, Function and Bioinformatics, 2005, 61, 658-665. | 2.6  | 4         |
| 40 | Structure of a T7 RNA polymerase elongation complex at 2.9 à resolution. Nature, 2002, 420, 43-50.                                                                                     | 27.8 | 218       |
| 41 | High-Resolution Crystals of Methionine Aminopeptidase fromPyrococcus furiosusObtained by Water-Mediated Transformation. Journal of Structural Biology, 1998, 121, 68-72.               | 2.8  | 20        |