
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2987615/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diadromy in a large tropical river, the Mekong: more common than assumed, with greater implications for management. Journal of Ecohydraulics, 2023, 8, 38-50.	3.1	8
2	Dispersal of fish eggs and larvae in a cascade of small hydropower plants with fish ladders. Hydrobiologia, 2022, 849, 339-356.	2.0	7
3	Contrasting natal origin and movement history informs recovery pathways for three lowland river species following a mass fish kill. Marine and Freshwater Research, 2022, 73, 237-246.	1.3	11
4	Assessment of the causes and solutions to the significant 2018–19 fish deaths in the Lower Darling River, New South Wales, Australia. Marine and Freshwater Research, 2022, 73, 147-158.	1.3	16
5	Mass fish kills catalyse improved water and fisheries management. Marine and Freshwater Research, 2022, 73, i-iii.	1.3	2
6	Life history strategies of Mekong pangasiid catfishes revealed by otolith microchemistry. Fisheries Research, 2022, 249, 106239.	1.7	11
7	Optimizing efforts to restore aquatic ecosystem connectivity requires thinking beyond large dams. Environmental Research Letters, 2022, 17, 014008.	5.2	16
8	Survival estimates across five life stages of redfin (<i>Perca fluviatilis</i>) exposed to simulated pumped-storage hydropower stressors. , 2022, 10, coac017.		4
9	Diverse migration tactics of fishes within the large tropical Mekong River system. Fisheries Management and Ecology, 2022, 29, 708-723.	2.0	8
10	Achieving fish passage outcomes at irrigation infrastructure; a case study from the Lower Mekong Basin. Aquaculture and Fisheries, 2021, 6, 113-124.	2.2	17
11	Evaluating the Ecological Benefits of Management Actions to Complement Environmental Flows in River Systems. Environmental Management, 2021, 67, 277-290.	2.7	3
12	Priority knowledge needs for management of migratory fish species in Cambodia. Fisheries Management and Ecology, 2021, 28, 393-416.	2.0	8
13	Assessing Temporal Patterns and Species Composition of Glass Eel (Anguilla spp.) Cohorts in Sumatra and Java Using DNA Barcodes. Diversity, 2021, 13, 193.	1.7	2
14	Native fish losses due to water extraction in Australian rivers: Evidence, impacts and a solution in modern fish―and farmâ€friendly screens. Ecological Management and Restoration, 2021, 22, 134-144.	1.5	15
15	Fish for whom?: Integrating the management of social complexities into technical investments for inclusive, multi-functional irrigation. World Development Perspectives, 2021, 22, 100318.	2.0	2
16	Variability in water chemistry in the Lower Mekong Basin: Considerations for fish life history reconstruction. Estuarine, Coastal and Shelf Science, 2021, 255, 107355.	2.1	6
17	Population demographics of golden perch (Macquaria ambigua) in the Darling River prior to a major fish kill: a guide for rehabilitation. Marine and Freshwater Research, 2021, , .	1.3	6
18	Editorial: Balancing Hydropower and Freshwater Environments in the Global South. Frontiers in Environmental Science, 2021, 9, .	3.3	0

#	Article	IF	CITATIONS
19	Ten complementary measures to assist with environmental watering programs in the Murray–Darling river system, Australia. River Research and Applications, 2020, 36, 645-655.	1.7	19
20	A compendium of ecological knowledge for restoration of freshwater fishes in Australia. Marine and Freshwater Research, 2020, 71, 1391.	1.3	28
21	Mortality events resulting from Australia's catastrophic fires threaten aquatic biota. Global Change Biology, 2020, 26, 5345-5350.	9.5	24
22	Simulation of different fishery regulations to prevent population decline in a large freshwater invertebrate, the Murray crayfish (Euastacus armatus). Marine and Freshwater Research, 2020, 71, 962.	1.3	5
23	Size, growth and mortality of riverine golden perch (Macquaria ambigua) across a latitudinal gradient. Marine and Freshwater Research, 2020, 71, 1651.	1.3	9
24	Morphological predictors of swimming speed performance in river and reservoir populations of <scp>Australian</scp> smelt <scp><i>Retropinna</i></scp> semoni. Journal of Fish Biology, 2020, 97, 1632-1643.	1.6	7
25	Hypoxic conditions interrupt floodâ€response movements of three lowland river fish species: Implications for flow restoration in modified landscapes. Ecohydrology, 2020, 13, e2197.	2.4	11
26	A Cone Fishway Facilitates Lateral Migrations of Tropical River-Floodplain Fish Communities. Water (Switzerland), 2020, 12, 513.	2.7	4
27	What is needed to restore native fishes in Australia's Murray–Darling Basin?. Marine and Freshwater Research, 2020, 71, 1464.	1.3	9
28	Gambusia holbrooki Survive Shear Stress, Pressurization and Avoid Blade Strike in a Simulated Pumped Hydroelectric Scheme. Frontiers in Environmental Science, 2020, 8, .	3.3	4
29	One Hundred Pressing Questions on the Future of Global Fish Migration Science, Conservation, and Policy. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	66
30	A cautionary tale about the potential impacts of gated culverts on fish passage restoration efforts. Journal of Ecohydraulics, 2019, 4, 27-42.	3.1	6
31	Migratory fishes in Myanmar rivers and wetlands: challenges for sustainable development between irrigation water control infrastructure and sustainable inland capture fisheries. Marine and Freshwater Research, 2019, 70, 1241.	1.3	12
32	Sequential fishways reconnect a coastal river reflecting restored migratory pathways for an entire fish community. Restoration Ecology, 2019, 27, 399-407.	2.9	10
33	Irrigation, fisheries and Sustainable Development Goals: the importance of working collaboratively to end world hunger and malnutrition. Marine and Freshwater Research, 2019, 70, i.	1.3	4
34	Speaking the same language: can the sustainable development goals translate the needs of inland fisheries into irrigation decisions?. Marine and Freshwater Research, 2019, 70, 1211.	1.3	20
35	Challenges balancing fisheries resource management and river development in Indonesia. Marine and Freshwater Research, 2019, 70, 1265.	1.3	2
36	Global advances in fish passage research and practice. Journal of Ecohydraulics, 2019, 4, 2-3.	3.1	2

LEE BAUMGARTNER

#	Article	IF	CITATIONS
37	Local perceptions of changes in the use and management of floodplain fisheries commons: the case of Pak Peung wetland in Lao PDR. Environment, Development and Sustainability, 2019, 21, 1835-1852.	5.0	12
38	Tolerable ranges of fluid shear for early life-stage fishes: implications for safe fish passage at hydropower and irrigation infrastructure. Marine and Freshwater Research, 2019, 70, 1503.	1.3	11
39	Estimating benefits and costs: a case of fish passages in Lao PDR and the development of the Lower Mekong Fishway Support Tool. Marine and Freshwater Research, 2019, 70, 1284.	1.3	8
40	Evaluation of a fish-friendly self-cleaning horizontal irrigation screen using autonomous sensors. Marine and Freshwater Research, 2019, 70, 1274.	1.3	4
41	Flexible and non-invasive passive integrated transponder (PIT) tagging protocols for tropical freshwater fish species. MethodsX, 2018, 5, 299-303.	1.6	5
42	Fishâ€Net: Probabilistic models for fishway planning, design and monitoring to support environmentally sustainable hydropower. Fish and Fisheries, 2018, 19, 677-697.	5.3	18
43	Adaptive Management of Environmental Flows: Using Irrigation Infrastructure to Deliver Environmental Benefits During a Large Hypoxic Blackwater Event in the Southern Murray–Darling Basin, Australia. Environmental Management, 2018, 61, 469-480.	2.7	21
44	Evaluating the placement of PIT tags in tropical river fishes: a case study involving two Mekong River species. Fisheries Research, 2018, 200, 43-48.	1.7	8
45	The future of fish passage science, engineering, and practice. Fish and Fisheries, 2018, 19, 340-362.	5.3	326
46	Abiotic drivers of activity in a large, free-ranging, freshwater teleost, Murray cod (Maccullochella) Tj ETQq0 0 0 r	gBT_/Overl	lock 10 Tf 50 3
47	Injury and mortality of two Mekong River species exposed to turbulent shear forces. Marine and Freshwater Research, 2018, 69, 1945.	1.3	12
48	Addressing fish-passage issues at hydropower and irrigation infrastructure projects in Indonesia. Marine and Freshwater Research, 2018, 69, 1805.	1.3	11
49	Using Strategic Adaptive Management to Facilitate Implementation of Environmental Flow Programs in Complex Social-Ecological Systems. Environmental Management, 2018, 62, 955-967.	2.7	12
50	Comparing fishway designs for application in a large tropical river system. Ecological Engineering, 2018, 120, 36-43.	3.6	14
51	Upper Caraş River (Danube watershed) fish populations fragmentation – technical rehabilitation proposal. Transylvanian Review of Systematical and Ecological Research, 2018, 20, 69-86.	0.1	3
52	Hydropower development and fish management: a food–water–energy nexus requiring international and multidisciplinary approach. Marine and Freshwater Research, 2018, 69, i.	1.3	1
53	Technical Solutions to Mitigate Shifting Fish Fauna Zones Impacted by Long Term Habitat Degradation in the Bistra MÄfrui River – Study Case. Transylvanian Review of Systematical and Ecological Research, 2018, 20, 75-114.	0.1	1
54	High fluid shear strain causes injury in silver shark: Preliminary implications for Mekong hydropower	2.0	11

turbine design. Fisheries Management and Ecology, 2017, 24, 193-198.

#	Article	IF	CITATIONS
55	Low light inhibits native fish movement through a verticalâ€ s lot fishway: Implications for engineering design. Fisheries Management and Ecology, 2017, 24, 177-185.	2.0	13
56	Confronting the risks of large-scale invasive species control. Nature Ecology and Evolution, 2017, 1, 172.	7.8	71
57	Recovery from a fish kill in a semiâ€arid Australian river: Can stocking augment natural recruitment processes?. Austral Ecology, 2017, 42, 218-226.	1.5	26
58	Managing native fish communities during a longâ€ŧerm drought. Ecohydrology, 2017, 10, e1820.	2.4	4
59	Mitigating the effects of barriers to freshwater fish migrations: the Australian experience. Marine and Freshwater Research, 2017, 68, 614.	1.3	66
60	Lower Mekong Fish Passage Conference: Applying innovation to secure fisheries productivity. Ecological Management and Restoration, 2017, 18, E8.	1.5	7
61	A piecewise regression approach for determining biologically relevant hydraulic thresholds for the protection of fishes at river infrastructure. Journal of Fish Biology, 2016, 88, 1677-1692.	1.6	28
62	Using otolith microchemistry to differentiate between stocked and unstocked Australian bass (Percalates novemaculeata). Fisheries Research, 2016, 183, 86-91.	1.7	3
63	How low can they go when going with the flow? Tolerance of egg and larval fishes to rapid decompression. Biology Open, 2016, 5, 786-793.	1.2	26
64	Contribution of stocked fish to riverine populations of golden perch (Macquaria ambigua) in the Murray–Darling Basin, Australia. Marine and Freshwater Research, 2016, 67, 1401.	1.3	22
65	Assessment of stocking effectiveness for Murray cod (Maccullochella peelii) and golden perch (Macquaria ambigua) in rivers and impoundments of south-eastern Australia. Marine and Freshwater Research, 2016, 67, 1410.	1.3	29
66	Adaptive management in action: using chemical marking to advance fish recovery programs in the Murray–Darling Basin. Marine and Freshwater Research, 2016, 67, i.	1.3	3
67	Recreational Fishing Effort, Catch, and Harvest for Murray Cod and Golden Perch in the Murrumbidgee River, Australia. North American Journal of Fisheries Management, 2015, 35, 649-658.	1.0	17
68	System‧pecific Variability in Murray Cod and Golden Perch Maturation and Growth Influences Fisheries Management Options. North American Journal of Fisheries Management, 2015, 35, 1226-1238.	1.0	10
69	Fish passage in the Murrayâ€Đarling Basin, Australia: Not just an upstream battle. Ecological Management and Restoration, 2014, 15, 28-39.	1.5	78
70	Understanding Barotrauma in Fish Passing Hydro Structures: A Global Strategy for Sustainable Development of Water Resources. Fisheries, 2014, 39, 108-122.	0.8	85
71	Using flow guilds of freshwater fish in an adaptive management framework to simplify environmental flow delivery for semiâ€arid riverine systems. Fish and Fisheries, 2014, 15, 410-427.	5.3	69
72	Perspective: Towards environmentally acceptable criteria for downstream fish passage through mini hydro and irrigation infrastructure in the Lower Mekong River Basin. Journal of Renewable and Sustainable Energy, 2014, 6, .	2.0	23

LEE BAUMGARTNER

#	Article	IF	CITATIONS
73	Entrainment and impingement of juvenile silver perch, <i>Bidyanus bidyanus</i> , and golden perch, <i>Macquaria ambigua</i> , at a fish screen: effect of velocity and light. Fisheries Management and Ecology, 2013, 20, 362-373.	2.0	15
74	Density-Dependent Energy Use Contributes to the Self-Thinning Relationship of Cohorts. American Naturalist, 2013, 181, 331-343.	2.1	8
75	Vulnerability of larval and juvenile white sturgeon to barotrauma: can they handle the pressure?. , 2013, 1, cot019-cot019.		20
76	Influence of Approach Velocity and Mesh Size on the Entrainment and Contact of a Lowland River Fish Assemblage at a Screened Irrigation Pump. PLoS ONE, 2013, 8, e67026.	2.5	17
77	Mini hydro development workshop: developing sustainable solutions for native fish. Ecological Management and Restoration, 2012, 13, e14.	1.5	4
78	USING AN EXPERIMENTAL <i>IN SITU</i> FISHWAY TO PROVIDE KEY DESIGN CRITERIA FOR LATERAL FISH PASSAGE IN TROPICAL RIVERS: A CASE STUDY FROM THE MEKONG RIVER, CENTRAL LAO PDR. River Research and Applications, 2012, 28, 1217-1229.	1.7	29
79	Influence of turbidity and passage rate on the efficiency of an infrared counter to enumerate and measure riverine fish. Journal of Applied Ichthyology, 2012, 28, 531-536.	0.7	10
80	Estimating the stocking potential of fish in impoundments by modelling supply and steadyâ€state demand. Freshwater Biology, 2012, 57, 1482-1499.	2.4	18
81	Critical Thermal Minima of ageâ€0 Australian bass, <i>Macquaria novemaculeata</i> , fingerlings: implications for stocking programmes. Fisheries Management and Ecology, 2012, 19, 344-351.	2.0	5
82	Reducing the perversion of diversion: Applying worldâ€standard fish screening practices to the Murray–Darling Basin. Ecological Management and Restoration, 2012, 13, 135-143.	1.5	19
83	Optimising chemical marking techniques for Australian bass, Macquaria novemaculeata, fry and fingerlings prior to restocking. Australian Journal of Zoology, 2011, 59, 242.	1.0	9
84	Generalist niche, specialist strategy: the diet of an Australian percichthyid. Journal of Fish Biology, 2011, 78, 1183-1199.	1.6	28
85	Distribution and movement of a stocked freshwater fish: implications of a variable habitat volume for stocking programs. Marine and Freshwater Research, 2011, 62, 1342.	1.3	12
86	Evaluating migratory fish behaviour and fishway performance: testing a combined assessment methodology. Australian Journal of Zoology, 2010, 58, 154.	1.0	25
87	Effects of irrigation pumps on riverine fish. Fisheries Management and Ecology, 2009, 16, 429-437.	2.0	43
88	Determining diel variation in fish assemblages downstream of three weirs in a regulated lowland river. Journal of Fish Biology, 2008, 72, 218-232.	1.6	33
89	Lock gates improve passage of smallâ€bodied fish and crustaceans in a low gradient verticalâ€slot fishway. Fisheries Management and Ecology, 2008, 15, 241-248.	2.0	18
90	Can a low-gradient vertical-slot fishway provide passage for a lowland river fish community?. Marine and Freshwater Research, 2008, 59, 332.	1.3	65

#	Article	IF	CITATIONS
91	Passage of non-salmonid fish through a Deelder lock on a lowland river. River Research and Applications, 2007, 23, 1058-1069.	1.7	45
92	Diet and feeding habits of predatory fishes upstream and downstream of a low-level weir. Journal of Fish Biology, 2007, 70, 879-894.	1.6	50
93	Mortality of larval Murray cod (Maccullochella peelii peelii) and golden perch (Macquaria ambigua) associated with passage through two types of low-head weirs. Marine and Freshwater Research, 2006, 57, 187.	1.3	50
94	Population estimation methods to quantify temporal variation in fish accumulations downstream of a weir. Fisheries Management and Ecology, 2006, 13, 355-364.	2.0	14