Xiaohui Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2987338/publications.pdf Version: 2024-02-01

Хилонии Ни

#	Article	IF	CITATIONS
1	Interactive Effects of Iron and Photoperiods on Tomato PlantÂGrowth and Fruit Quality. Journal of Plant Growth Regulation, 2023, 42, 376-389.	5.1	12
2	Polyamine Oxidase Triggers H2O2-Mediated Spermidine Improved Oxidative Stress Tolerance of Tomato Seedlings Subjected to Saline-Alkaline Stress. International Journal of Molecular Sciences, 2022, 23, 1625.	4.1	17
3	Abscisic acid alleviates harmful effect of saline–alkaline stress on tomato seedlings. Plant Physiology and Biochemistry, 2022, 175, 58-67.	5.8	26
4	RBOH1-dependent H2O2 mediates spermine-induced antioxidant enzyme system to enhance tomato seedling tolerance to salinity–alkalinity stress. Plant Physiology and Biochemistry, 2021, 164, 237-246.	5.8	17
5	Effects of Application Methods of Boron on Tomato Growth, Fruit Quality and Flavor. Horticulturae, 2021, 7, 223.	2.8	7
6	Nitric oxide mediates γ-aminobutyric acid-enhanced muskmelon tolerance to salinity–alkalinity stress conditions. Scientia Horticulturae, 2021, 286, 110229.	3.6	11
7	H2O2 and NO are involved in trehalose-regulated oxidative stress tolerance in cold-stressed tomato plants. Environmental and Experimental Botany, 2020, 171, 103961.	4.2	64
8	Crosstalk between GABA and ALA to improve antioxidation and cell expansion of tomato seedling under cold stress. Environmental and Experimental Botany, 2020, 180, 104228.	4.2	17
9	Exogenous spermine-induced expression of SISPMS gene improves salinity–alkalinity stress tolerance by regulating the antioxidant enzyme system and ion homeostasis in tomato. Plant Physiology and Biochemistry, 2020, 157, 79-92.	5.8	19
10	GSTU43 gene involved in ALA-regulated redox homeostasis, to maintain coordinated chlorophyll synthesis of tomato at low temperature. BMC Plant Biology, 2019, 19, 323.	3.6	19
11	Exogenous GABA enhances muskmelon tolerance to salinity-alkalinity stress by regulating redox balance and chlorophyll biosynthesis. BMC Plant Biology, 2019, 19, 48.	3.6	109
12	Polyamines are involved in GABA-regulated salinity-alkalinity stress tolerance in muskmelon. Environmental and Experimental Botany, 2019, 164, 181-189.	4.2	35
13	NO is involved in JA- and H2O2-mediated ALA-induced oxidative stress tolerance at low temperatures in tomato. Environmental and Experimental Botany, 2019, 161, 334-343.	4.2	47
14	Exogenous 5-aminolevulinic acid pretreatment ameliorates oxidative stress triggered by low-temperature stress of Solanum lycopersicum. Acta Physiologiae Plantarum, 2018, 40, 1.	2.1	14
15	H2O2 mediates ALA-induced glutathione and ascorbate accumulation in the perception and resistance to oxidative stress in Solanum lycopersicum at low temperatures. BMC Plant Biology, 2018, 18, 34.	3.6	71
16	Exogenous γ-Aminobutyric Acid Improves the Structure and Function of Photosystem II in Muskmelon Seedlings Exposed to Salinity-Alkalinity Stress. PLoS ONE, 2016, 11, e0164847.	2.5	53
17	Exogenous spermidine is enhancing tomato tolerance to salinity–alkalinity stress by regulating chloroplast antioxidant system and chlorophyll metabolism. BMC Plant Biology, 2015, 15, 303.	3.6	111
18	Application of γ-aminobutyric acid demonstrates a protective role of polyamine and GABA metabolism in muskmelon seedlings under Ca(NO3)2 stress. Plant Physiology and Biochemistry, 2015, 92, 1-10.	5.8	85

#	Article	IF	CITATIONS
19	The Photoprotective Role of Spermidine in Tomato Seedlings under Salinity-Alkalinity Stress. PLoS ONE, 2014, 9, e110855.	2.5	47
20	Effect of exogenous spermidine on polyamine content and metabolism in tomato exposed to salinity–alkalinity mixed stress. Plant Physiology and Biochemistry, 2012, 57, 200-209.	5.8	129