Charalampos Londos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2987280/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Theoretical investigation of nitrogen-vacancy defects in silicon. AIP Advances, 2022, 12, .	1.3	4
2	The origin of infrared bands in nitrogen-doped Si. Journal of Materials Science, 2022, 57, 5507-5517.	3.7	1
3	The Ci(Sil)n defect in neutron-irradiated silicon. Journal of Materials Science: Materials in Electronics, 2020, 31, 930-934.	2.2	1
4	Infrared spectroscopy studies of localized vibrations in neutron irradiated silicon. Journal of Materials Science: Materials in Electronics, 2019, 30, 15345-15355.	2.2	0
5	Isovalent doping and the CiOi defect in germanium. Journal of Materials Science: Materials in Electronics, 2018, 29, 4261-4265.	2.2	3
6	IR studies of the oxygen and carbon precipitation processes in electron irradiated tin-doped silicon. Journal of Materials Science: Materials in Electronics, 2017, 28, 10298-10312.	2.2	2
7	The CiOi(Sil)2 defect in silicon: density functional theory calculations. Journal of Materials Science: Materials in Electronics, 2017, 28, 10295-10297.	2.2	8
8	Relative concentrations of carbon related defects in silicon. Journal of Materials Science: Materials in Electronics, 2016, 27, 11268-11272.	2.2	1
9	Controlling A-center concentration in silicon through isovalent doping: mass action analysis. Journal of Materials Science: Materials in Electronics, 2016, 27, 4385-4391.	2.2	4
10	Infrared study of defects in nitrogen-doped electron irradiated silicon. Journal of Materials Science: Materials in Electronics, 2016, 27, 2054-2061.	2.2	6
11	Engineering VO, CiOi and CiCs defects in irradiated Si through Ge and Pb doping. Journal of Materials Science: Materials in Electronics, 2015, 26, 2248-2256.	2.2	1
12	VV and VO2 defects in silicon studied with hybrid density functional theory. Journal of Materials Science: Materials in Electronics, 2015, 26, 1568-1571.	2.2	8
13	Oxygen defect processes in silicon and silicon germanium. Applied Physics Reviews, 2015, 2, .	11.3	68
14	Modeling defect reactions processes to study the impact of carbon on the production and conversion of A-centers in silicon. Journal of Materials Science: Materials in Electronics, 2014, 25, 4872-4876.	2.2	2
15	Semi-empirical modelling of the di-interstitial defect in silicon. Journal of Materials Science: Materials in Electronics, 2014, 25, 5441-5445.	2.2	0
16	G-centers in irradiated silicon revisited: A screened hybrid density functional theory approach. Journal of Applied Physics, 2014, 115, .	2.5	15
17	Strategies to suppress A-center formation in silicon and germanium from a mass action analysis viewpoint. Journal of Materials Science: Materials in Electronics, 2014, 25, 1388-1392.	2.2	1
18	Oxygen-vacancy defects in electron-irradiated Si: the role of carbon in their behavior. Journal of Materials Science: Materials in Electronics, 2014, 25, 914-921.	2.2	4

CHARALAMPOS LONDOS

#	Article	IF	CITATIONS
19	Vacancy-oxygen defects in silicon: the impact of isovalent doping. Journal of Materials Science: Materials in Electronics, 2014, 25, 2395-2410.	2.2	22
20	Carbon related defects in irradiated silicon revisited. Scientific Reports, 2014, 4, 4909.	3.3	38
21	A-centers in silicon studied with hybrid density functional theory. Applied Physics Letters, 2013, 103, 052101.	3.3	40
22	Infrared signals correlated with self-interstitial clusters in neutron-irradiated silicon. Journal of Materials Science: Materials in Electronics, 2013, 24, 4328-4331.	2.2	5
23	Impact of the germanium concentration in the stability of E-centers and A-centers in Si1â^'xGex. Journal of Materials Science: Materials in Electronics, 2013, 24, 2772-2776.	2.2	6
24	Impact of isovalent defect engineering strategies on carbon-related clusters in silicon. Journal of Materials Science: Materials in Electronics, 2013, 24, 1696-1701.	2.2	11
25	Impact of isovalent doping on the trapping of vacancy and interstitial related defects in Si. Journal of Applied Physics, 2013, 113, 113506.	2.5	61
26	Di-interstitial defect in silicon revisited. Journal of Applied Physics, 2013, 114, .	2.5	5
27	Impact of isovalent doping on radiation defects in silicon. Journal of Applied Physics, 2013, 114, .	2.5	11
28	Production and evolution of A-centers in n-type Silâ [~] 'xGex. Journal of Applied Physics, 2013, 113, 113507.	2.5	11
29	Localised vibrational mode spectroscopy studies of self-interstitial clusters in neutron irradiated silicon. Journal of Applied Physics, 2013, 114, 043502.	2.5	4
30	Interaction of <i>n</i> -type dopants with oxygen in silicon and germanium. Journal of Applied Physics, 2012, 112, .	2.5	10
31	Formation and evolution of oxygen-vacancy clusters in lead and tin doped silicon. Journal of Applied Physics, 2012, 111, .	2.5	22
32	Defect engineering of the oxygen-vacancy clusters formation in electron irradiated silicon by isovalent doping: An infrared perspective. Journal of Applied Physics, 2012, 112, .	2.5	15
33	IR studies of the impact of Ge doping on the successive conversion of VOn defects in Czochralski-Si containing carbon. Journal of Applied Physics, 2011, 109, .	2.5	28
34	Production of vacancy-oxygen defect in electron irradiated silicon in the presence of self-interstitial-trapping impurities. Journal of Applied Physics, 2011, 110, 093510.	2.5	11
35	Effect of tin doping on oxygen- and carbon-related defects in Czochralski silicon. Journal of Applied Physics, 2011, 110, .	2.5	58
36	Point defect engineering strategies to suppress A-center formation in silicon. Applied Physics Letters, 2011, 99, .	3.3	68

CHARALAMPOS LONDOS

#	Article	IF	CITATIONS
37	Effect of germanium doping on the annealing characteristics of oxygen and carbon-related defects in Czochralski silicon. Journal of Applied Physics, 2010, 107, 093520.	2.5	18
38	Interaction of A-centers with isovalent impurities in silicon. Journal of Applied Physics, 2010, 107, 093518.	2.5	59
39	Radiation effects on the behavior of carbon and oxygen impurities and the role of Ge in Czochralski grown Si upon annealing. Journal of Applied Physics, 2009, 105, 123508.	2.5	27
40	Infrared absorption spectra of defects in carbon doped neutron-irradiated Si. Journal of Materials Science: Materials in Electronics, 2007, 18, 721-728.	2.2	8
41	The CiCs(Sil) defect in silicon: An infrared spectroscopy study. Journal of Applied Physics, 2006, 100, 033523.	2.5	18
42	Effect of carbon on oxygen precipitation in Czochralski silicon. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 1963-1967.	0.8	19
43	Oxygen agglomeration and formation of oxygen-related thermal donors in heat-treated silicon. Crystal Research and Technology, 2003, 38, 394-398.	1.3	6
44	Defects in silicon heat-treated under uniform stress and irradiated with fast neutrons. Physica Status Solidi A, 2003, 199, 207-213.	1.7	4
45	Double thermal donors in Czochralski-grown silicon heat-treated under atmospheric and high hydrostatic pressures. Physica Status Solidi (B): Basic Research, 2003, 235, 75-78.	1.5	25
46	Complementary infrared and transmission electron microscopy studies of the effect of high temperature–high pressure treatments on oxygen-related defects in irradiated silicon. Journal of Applied Physics, 2003, 94, 4363-4367.	2.5	7
47	Title is missing!. Journal of Materials Science: Materials in Electronics, 2001, 12, 223-225.	2.2	7
48	Investigation of two infrared bands at 1032 and 1043â€,cmâ^1 in neutron irradiated silicon. Journal of Applied Physics, 2001, 89, 928-932.	2.5	12
49	Shoulder at the 887 cmâ^'1 infrared band in neutron irradiated Si. Journal of Applied Physics, 1999, 85, 8074-8078.	2.5	3
50	TSDC probe of anisotropic polarizability in fluorapatite single crystals. Radiation Effects and Defects in Solids, 1999, 149, 279-286.	1.2	1
51	Infrared studies of defects formed during postirradiation anneals of Czochralski silicon. Journal of Applied Physics, 1998, 84, 3569-3573.	2.5	8
52	Origin of infrared bands in neutron-irradiated silicon. Journal of Applied Physics, 1997, 81, 1645-1650.	2.5	34
53	Isochronal Annealing Studies of the Oxygen–Vacancy Centres in Neutron-Irradiated Si. Physica Status Solidi A, 1997, 163, 325-335.	1.7	16
54	Isochronal Annealing Studies of the Oxygen–Vacancy Centres in Neutron-Irradiated Si. , 1997, 163, 325.		1

#	Article	IF	CITATIONS
55	Deep level transient spectroscopy investigation of a deep trap in floatâ€zone Si. Journal of Applied Physics, 1994, 75, 645-647.	2.5	3
56	Lowâ€Temperature Dependence of the EPR Spectra of Gd _{0.5} RE _{0.5} Ba ₂ Cu ₃ O _{7â^î^} Compounds in the Tetragonal Phase. Physica Status Solidi (B): Basic Research, 1992, 170, 597-607.	1.5	9
57	The Production and the Evolution of A-Centers and Divacancies in Silicon. Physica Status Solidi A, 1992, 132, 43-50.	1.7	5
58	Investigation of a New Metastable Defect in Boron-Doped Cz-Si. Physica Status Solidi A, 1992, 133, 429-437.	1.7	3
59	Infrared Studies of Natural Topaz. Physica Status Solidi A, 1992, 133, 473-479.	1.7	7
60	EPR Measurements on the Cu2+ Ion in the High-Tc Superconductors MBa2Cu3O7 – δ. Physica Status Solidi (B): Basic Research, 1991, 165, 249-253.	1.5	7
61	An alternative treatment of the problem of image formation of an object through plane or spherical interfaces. American Journal of Physics, 1990, 58, 771-773.	0.7	0
62	Notes on the carbon-associated deep level complex in irradiated silicon. Physica Status Solidi A, 1988, 109, 421-426.	1.7	2
63	Annealing Studies of Defects Pertinent to Radiation Damage in Si:B. Physica Status Solidi A, 1987, 102, 639-644.	1.7	27
64	Charge-Dependent Defect Traces in the DLTS and MCTS Spectra of Silicon. Physica Status Solidi A, 1986, 96, 637-642.	1.7	0
65	Room-temperature irradiation of p-type Silicon. Physica Status Solidi A, 1985, 92, 609-614.	1.7	21