Susi Varvayanis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2986885/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using stakeholder insights to enhance engagement in PhD professional development. PLoS ONE, 2022, 17, e0262191.	1.1	1
2	A cross-institutional analysis of the effects of broadening trainee professional development on research productivity. PLoS Biology, 2021, 19, e3000956.	2.6	18
3	Applying Experiential Learning to Career Development Training for Biomedical Graduate Students and Postdocs: Perspectives on Program Development and Design. CBE Life Sciences Education, 2020, 19, es7.	1.1	25
4	Cornell BEST. , 2020, , 11-24.		1
5	NCCR Chemical Biology: Interdisciplinary Research Excellence, Outreach, Education, and New Tools for Switzerland. Chimia, 2011, 65, 832-834.	0.3	2
6	Retinoic acid induces expression of SLP-76: Expression with c-FMS enhances ERK activation and retinoic acid-induced differentiation/GO arrest of HL-60 cells. European Journal of Cell Biology, 2006, 85, 117-132.	1.6	22
7	Retinoic acid-induced CD38 expression in HL-60 myeloblastic leukemia cells regulates cell differentiation or viability depending on expression levels. Journal of Cellular Biochemistry, 2006, 97, 1328-1338.	1.2	38
8	A Retinoic Acid Receptor β/γ-Selective Prodrug (tazarotene) Plus a Retinoid X Receptor Ligand Induces Extracellular Signal-Regulated Kinase Activation, Retinoblastoma Hypophosphorylation, GOArrest, and Cell Differentiation. Molecular Pharmacology, 2004, 66, 1727-1737.	1.0	8
9	RETINOIC ACID, BROMODEOXYURIDINE, AND THE Î"205 MUTANT POLYOMA VIRUS MIDDLE T ANTIGEN REGULATE EXPRESSION LEVELS OF A COMMON ENSEMBLE OF PROTEINS ASSOCIATED WITH EARLY STAGES OF INDUCING HL-60 LEUKEMIC CELL DIFFERENTIATION. In Vitro Cellular and Developmental Biology - Animal 2004 40, 216	0.7	8
10	Retinoic acid-induced growth arrest and differentiation: retinoic acid up-regulates CD32 (Fc gammaRII) expression, the ectopic expression of which retards the cell cycle. Molecular Cancer Therapeutics, 2002, 1, 493-506.	1.9	15
11	NONGENOMIC VITAMIN D3 ANALOGS ACTIVATING ERK2 IN HL-60 CELLS SHOW THAT RETINOIC ACID–INDUCED DIFFERENTIATION AND CELL CYCLE ARREST REQUIRE EARLY CONCURRENT MAPK AND RAR AND RXR ACTIVATION. In Vitro Cellular and Developmental Biology - Animal, 2001, 37, 93.	0.7	5
12	Retinoic acid-induced blr1 expression requires RARα, RXR, and MAPK activation and uses ERK2 but not JNK/SAPK to accelerate cell differentiation. European Journal of Cell Biology, 2001, 80, 59-67.	1.6	40
13	Retinoic acid causes MEK-dependent RAF phosphorylation through RARα plus RXR activation in HL-60 cells. Differentiation, 2001, 68, 55-66.	1.0	45
14	Polyomavirus Small t Antigen Prevents Retinoic Acid-Induced Retinoblastoma Protein Hypophosphorylation and Redirects Retinoic Acid-Induced G 0 Arrest and Differentiation to Apoptosis. Journal of Virology, 2001, 75, 5302-5314.	1.5	11
15	RETINOIC ACID INCREASES AMOUNT OF PHOSPHORYLATED RAF; ECTOPIC EXPRESSION OF cFMS REVEALS THAT RETINOIC ACID-INDUCED DIFFERENTIATION IS MORE STRONGLY DEPENDENT ON ERK2 SIGNALING THAN INDUCED GO ARREST IS. In Vitro Cellular and Developmental Biology - Animal, 2000, 36, 249.	0.7	28
16	RETINOIC ACID INCREASES AMOUNT OF PHOSPHORYLATED RAF; ECTOPIC EXPRESSION OF cFMS REVEALS THAT RETINOIC ACID-INDUCED DIFFERENTIATION IS MORE STRONGLY DEPENDENT ON ERK2 SIGNALING THAN INDUCED GO ARREST IS. In Vitro Cellular and Developmental Biology - Animal, 2000, 36, 249-255.	0.7	2
17	Retinoic acid selectively activates the ERK2 but not JNK/SAPK or P38 map kinases when inducing myeloid differentiation. In Vitro Cellular and Developmental Biology - Animal, 1999, 35, 527-532.	0.7	51
18	Transformation-Defective Polyoma Middle T Antigen Mutants Defective in PLCÎ ³ , Pl-3, or src Kinase Activation Enhance ERK2 Activation and Promote Retinoic Acid-Induced, Cell Differentiation Like Wild-Type Middle T. Experimental Cell Research, 1999, 248, 538-551.	1.2	14

SUSI VARVAYANIS

#	Article	IF	CITATIONS
19	Polyoma Middle T Antigen in HL-60 Cells Accelerates Hematopoietic Myeloid and Monocytic Cell Differentiation. Experimental Cell Research, 1998, 238, 42-50.	1.2	12
20	Retinoic acid induced mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK) kinase-dependent MAP kinase activation needed to elicit HL-60 cell differentiation and growth arrest. Cancer Research, 1998, 58, 3163-72.	0.4	203
21	FMS (CSF-1 Receptor) Prolongs Cell Cycle and Promotes Retinoic Acid-Induced Hypophosphorylation of Retinoblastoma Protein, G1 Arrest, and Cell Differentiation. Experimental Cell Research, 1996, 229, 111-125.	1.2	17
22	RB phosphorylation in sodium butyrate-resistant HL-60 cells: Cross-resistance to retinoic acid but not vitamin D3. Journal of Cellular Physiology, 1995, 163, 502-509.	2.0	13
23	DMSO, sodium butyrate, and TPA induce hypophosphorylation of RB with HL-60 cell differentiation. In Vitro Cellular and Developmental Biology - Animal, 1995, 31, 164-167.	0.7	11
24	The Ratio of Retinoblastoma (RB) to fos and RB to myc Expression during the Cell Cycle. Experimental Biology and Medicine, 1995, 210, 205-212.	1.1	6
25	Enhanced Cell Differentiation When RB Is Hypophosphorylated and Down-Regulated by Radicicol, a SRC-Kinase Inhibitor. Experimental Cell Research, 1994, 214, 163-171.	1.2	22
26	Late Dephosphorylation of the RB Protein in G2 during the Process of Induced Cell Differentiation. Experimental Cell Research, 1994, 214, 250-257.	1.2	37
27	1,25-dihydroxy vitamin D3 and 12-O-tetradecanoyl phorbol-13-acetate synergistically induce monocytic cell differentiation: FOS and RB expression. Journal of Cellular Physiology, 1993, 156, 198-203.	2.0	7
28	C-FMS dependent HL-60 cell differentiation and regulation of RB gene expression. Journal of Cellular Physiology, 1993, 157, 379-391.	2.0	20
29	12-O-tetradecanoylphorbol-13-acetate and staurosporine induce increased retinoblastoma tumor suppressor gene expression with megakaryocytic differentiation of leukemic cells. Cancer Research, 1993, 53, 3085-91.	0.4	17
30	RB tumor suppressor gene expression responds to DNA synthesis inhibitors. In Vitro Cellular & Developmental Biology, 1992, 28, 669-672.	1.0	9
31	Regulated expression of the RB "tumor suppressor gene―in normal lymphocyte mitogenesis: Elevated expression in transformed leukocytes and role as a "status quo―gene. Experimental Cell Research, 1991, 192, 289-297.	1.2	14
32	HTLV-III infection of EBV-genome-positive B-lymphoid cells with or without detectable T4 antigens. International Journal of Cancer, 1987, 39, 198-202.	2.3	68
33	Isolation of a new virus, HBLV, in patients with lymphoproliferative disorders. Science, 1986, 234, 596-601.	6.0	1,472