Rita Crinelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2986779/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	3β-Hydroxy-5β-hydroxy-B-norcholestane-6β-carboxaldehyde (SEC-B) Induces Proinflammatory Activation of Human Endothelial Cells Associated with Nitric Oxide Production and Endothelial Nitric Oxide Synthase/Caveolin-1 Dysregulation. Antioxidants, 2022, 11, 1148.	2.2	4
2	LDL receptors, caveolae and cholesterol in endothelial dysfunction: oxLDLs accomplices or victims?. British Journal of Pharmacology, 2021, 178, 3104-3114.	2.7	34
3	Activation of NRF2 and ATF4 Signaling by the Pro-Glutathione Molecule I-152, a Co-Drug of N-Acetyl-Cysteine and Cysteamine. Antioxidants, 2021, 10, 175.	2.2	11
4	Intracellular Redox-Modulated Pathways as Targets for Effective Approaches in the Treatment of Viral Infection. International Journal of Molecular Sciences, 2021, 22, 3603.	1.8	35
5	I-152, a supplier of N-acetyl-cysteine and cysteamine, inhibits immunoglobulin secretion and plasma cell maturation in LP-BM5 murine leukemia retrovirus-infected mice by affecting the unfolded protein response. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165922.	1.8	6
6	The Ubiquitin Gene Expression Pattern and Sensitivity to UBB and UBC Knockdown Differentiate Primary 23132/87 and Metastatic MKN45 Gastric Cancer Cells. International Journal of Molecular Sciences, 2020, 21, 5435.	1.8	19
7	The Synthetic Cannabinoid URB447 Reduces Brain Injury and the Associated White Matter Demyelination after Hypoxia-Ischemia in Neonatal Rats. ACS Chemical Neuroscience, 2020, 11, 1291-1299.	1.7	11
8	Boosting GSH Using the Co-Drug Approach: I-152, a Conjugate of N-acetyl-cysteine and β-mercaptoethylamine. Nutrients, 2019, 11, 1291.	1.7	18
9	Secosterol-B affects endoplasmic reticulum structure in endothelial cells. Journal of Steroid Biochemistry and Molecular Biology, 2019, 190, 234-241.	1.2	8
10	A negative feedback mechanism links UBC gene expression to ubiquitin levels by affecting RNA splicing rather than transcription. Scientific Reports, 2019, 9, 18556.	1.6	10
11	Design, Synthesis, and Biological Activity of Hydrogen Peroxide Responsive Arylboronate Melatonin Hybrids. Chemical Research in Toxicology, 2019, 32, 100-112.	1.7	18
12	Proteasome-mediated remodeling of the proteome and phosphoproteome during kiwifruit pollen germination. Journal of Proteomics, 2019, 192, 334-345.	1.2	13
13	The dual role of mitochondrial superoxide in arsenite toxicity: Signaling at the boundary between apoptotic commitment and cytoprotection. Toxicology and Applied Pharmacology, 2018, 345, 26-35.	1.3	13
14	Induction of <i>ubiquitin C</i> (<i><scp>UBC</scp></i>) gene transcription is mediated by <scp>HSF</scp> 1: role of proteotoxic and oxidative stress. FEBS Open Bio, 2018, 8, 1471-1485.	1.0	24
15	Endothelial cells, endoplasmic reticulum stress and oxysterols. Redox Biology, 2017, 13, 581-587.	3.9	100
16	Resveratrol fuels HER2 and ERα-positive breast cancer behaving as proteasome inhibitor. Aging, 2017, 9, 508-523.	1.4	40
17	Dynamic transcription of ubiquitin genes under basal and stressful conditions and new insights into the multiple UBC transcript variants. Gene, 2015, 573, 100-109.	1.0	43
18	Molecular Dissection of the Human Ubiquitin C Promoter Reveals Heat Shock Element Architectures with Activating and Repressive Functions. PLoS ONE, 2015, 10, e0136882.	1.1	16

RITA CRINELLI

#	Article	IF	CITATIONS
19	Proteomic Analysis of MG132-Treated Germinating Pollen Reveals Expression Signatures Associated with Proteasome Inhibition. PLoS ONE, 2014, 9, e108811.	1.1	4
20	Role of the ubiquitin-proteasome pathway and some peptidases during seed germination and copper stress in bean cotyledons. Plant Physiology and Biochemistry, 2014, 76, 77-85.	2.8	30
21	InÂvitro toxicity of silver nanoparticles to kiwifruit pollen exhibits peculiar traits beyond the cause of silver ion release. Environmental Pollution, 2013, 179, 258-267.	3.7	54
22	Molecules Altering the Intracellular Thiol Content Modulate NF-kB and STAT-1/IRF-1 Signalling Pathways and IL-12 p40 and IL-27 p28 Production in Murine Macrophages. PLoS ONE, 2013, 8, e57866.	1.1	30
23	Yin Yang 1 Intronic Binding Sequences and Splicing Elicit Intron-Mediated Enhancement of Ubiquitin C Gene Expression. PLoS ONE, 2013, 8, e65932.	1.1	19
24	Ubiquitin C gene: Structure, function, and transcriptional regulation. Advances in Bioscience and Biotechnology (Print), 2013, 04, 1057-1062.	0.3	32
25	Reactive oxygen species are involved in pollen tube initiation in kiwifruit. Plant Biology, 2012, 14, 64-76.	1.8	79
26	Unique Toxin Profile of a Mediterranean <i>Ostreopsis</i> cf. <i>ovata</i> Strain: HR LC-MS ^{<i>n</i>} Characterization of Ovatoxin-f, a New Palytoxin Congener. Chemical Research in Toxicology, 2012, 25, 1243-1252.	1.7	100
27	Palytoxin and an Ostreopsis Toxin Extract Increase the Levels of mRNAs Encoding Inflammation-Related Proteins in Human Macrophages via p38 MAPK and NF-I®B. PLoS ONE, 2012, 7, e38139.	1.1	33
28	Induction of Endoplasmic Reticulum Stress Response by the Indole-3-Carbinol Cyclic Tetrameric Derivative CTet in Human Breast Cancer Cell Lines. PLoS ONE, 2012, 7, e43249.	1.1	41
29	Proteomic changes and molecular effects associated with Cr(III) and Cr(VI) treatments on germinating kiwifruit pollen. Phytochemistry, 2011, 72, 1786-1795.	1.4	14
30	Binding force measurement of NF-κB–ODNs interaction: An AFM based decoy and drug testing tool. Biosensors and Bioelectronics, 2011, 28, 158-165.	5.3	4
31	Label-free quantification of activated NF-κB in biological samples by atomic force microscopy. Biosensors and Bioelectronics, 2010, 25, 2490-2496.	5.3	11
32	Oxidized Ultrashort Nanotubes as Carbon Scaffolds for the Construction of Cell-Penetrating NF-κB Decoy Molecules. ACS Nano, 2010, 4, 2791-2803.	7.3	38
33	De-ubiquitylation is the most critical step in the ubiquitin-mediated homeostatic control of the NF-κB/IKK basal activity. Molecular and Cellular Biochemistry, 2009, 331, 69-80.	1.4	4
34	A potent enhancer element in the 5′-UTR intron is crucial for transcriptional regulation of the human ubiquitin C gene. Gene, 2009, 448, 88-101.	1.0	59
35	Ubiquitin over-expression promotes E6AP autodegradation and reactivation of the p53/MDM2 pathway in HeLa cells. Molecular and Cellular Biochemistry, 2008, 318, 129-145.	1.4	24
36	Both trivalent and hexavalent chromium strongly alter in vitro germination and ultrastructure of kiwifruit pollen. Chemosphere, 2007, 66, 1165-1174.	4.2	45

RITA CRINELLI

#	Article	IF	CITATIONS
37	Uptake and toxicity of Cr(III) in celery seedlings. Chemosphere, 2006, 64, 1695-1703.	4.2	119
38	Drug Delivery through Phagocytosis of Red Blood Cells. Transfusion Medicine and Hemotherapy, 2004, 31, 92-101.	0.7	20
39	Transcription factor decoy oligonucleotides modified with locked nucleic acids: an in vitro study to reconcile biostability with binding affinity. Nucleic Acids Research, 2004, 32, 1874-1885.	6.5	36
40	Locked Nucleic Acids (LNA): Versatile Tools for Designing Oligonucleotide Decoys with High Stability and Affinity. Current Drug Targets, 2004, 5, 745-752.	1.0	22
41	Involvement of the ubiquitin/proteasome pathway in the organisation and polarised growth of kiwifruit pollen tubes. Sexual Plant Reproduction, 2003, 16, 123-133.	2.2	16
42	Erythrocyte-mediated delivery of drugs, peptides and modified oligonucleotides. Gene Therapy, 2002, 9, 749-751.	2.3	90
43	Design and characterization of decoy oligonucleotides containing locked nucleic acids. Nucleic Acids Research, 2002, 30, 2435-2443.	6.5	111
44	Modulation of ICAM-1 Expression in ECV304 Cells by Macrophage-Released Cytokines. Blood Cells, Molecules, and Diseases, 2001, 27, 978-991.	0.6	32
45	N-end Rule Specificity within the Ubiquitin/Proteasome Pathway Is Not an Affinity Effect. Journal of Biological Chemistry, 2001, 276, 39428-39437.	1.6	24
46	Inhibition of Proteasome Activity Strongly Affects Kiwifruit Pollen Germination. Involvement of the Ubiquitin/Proteasome Pathway as a Major Regulator. Plant Physiology, 2001, 126, 1150-1161.	2.3	50
47	The Ubiquitin-Dependent Proteolytic System and other Potential Targets for the Modulation of Nuclear Factor-kB (NF-kB). Current Drug Targets, 2000, 1, 387-399.	1.0	184
48	Selective Inhibition of NF-kB Activation and TNF-α Production in Macrophages by Red Blood Cell-Mediated Delivery of Dexamethasone. Blood Cells, Molecules, and Diseases, 2000, 26, 211-222.	0.6	63
49	Development-related changes of protein ubiquitination in pollen from male and female kiwifruit (Actinidia deliciosa). Physiologia Plantarum, 1999, 107, 128-135.	2.6	15
50	Efficient inhibition of macrophage TNF-α production upon targeted delivery of K48R ubiquitin. British Journal of Haematology, 1999, 104, 475-481.	1.2	20
51	Alteration of α-spectrin ubiquitination due to age-dependent changes in the erythrocyte membrane. FEBS Journal, 1999, 261, 775-783.	0.2	25
52	Activation of the ubiquitin proteolytic system in murine acquired immunodeficiency syndrome affects IkappaBalpha turnover. FEBS Journal, 1999, 263, 202-211.	0.2	5
53	Protein Degradation and Apoptotic Death in Lymphocytes during Fiv Infection: Activation of the Ubiquitin–Proteasome Proteolytic System. Experimental Cell Research, 1999, 248, 381-390.	1.2	15
54	Structure and expression of the human ubiquitin fusion–degradation gene (UFD1L). Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1396, 158-162.	2.4	22

RITA CRINELLI

#	Article	IF	CITATIONS
55	Structural determinants that make hexokinase susceptible to ubiquitin-and ATP- dependent proteolysis. Biochemical Society Transactions, 1997, 25, 69S-69S.	1.6	0
56	Molecular bases of hexokinase deficiency. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1997, 1360, 211-221.	1.8	17
57	Up-Regulation of the Ubiquitin-Conjugating and Proteolytic Systems in Murine Acquired Immunodeficiency Syndrome. FEBS Journal, 1997, 247, 91-97.	0.2	4
58	MODULATION OF THE HEAT SHOCK UBIQUITIN POOL IN SKELETONEMA COSTATUM (BACILLARIOPHYCEAE)1. Journal of Phycology, 1996, 32, 409-415.	1.0	5
59	Ubiquitin Is Conjugated to the Cytoskeletal Protein α-Spectrin in Mature Erythrocytes. Journal of Biological Chemistry, 1995, 270, 8928-8935.	1.6	33
60	The soluble but not mitochondrially bound hexokinase is a substrate for the ATP- and ubiquitin-dependent proteolytic system. BBA - Proteins and Proteomics, 1994, 1206, 180-190.	2.1	17
61	Intracellular distribution of hexokinase in rabbit brain. Molecular and Cellular Biochemistry, 1993, 122, 123-132.	1.4	8
62	Intracellular Distribution of Protein as a Determinant for Ubiquitination and Proteolytic Degradation. Annals of the New York Academy of Sciences, 1992, 673, 103-109.	1.8	3