Xiangdong Yao

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2986595/xiangdong-yao-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

171	14,241	64	116
papers	citations	h-index	g-index
178	16,818 ext. citations	11.6	6.92
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
171	Single Carbon Vacancy Traps Atomic Platinum for Hydrogen Evolution Catalysis <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	21
170	Single-site catalysis in heterogeneous electro-Fenton reaction for wastewater remediation. <i>Chem Catalysis</i> , 2022 ,		2
169	Defective Fe Metal-organic Frameworks Enhance Metabolic Profiling for High-accuracy Diagnosis of Human Cancers <i>Advanced Materials</i> , 2022 , e2201422	24	5
168	Beyond Platinum: Defects Abundant CoP3/Ni2P Heterostructure for Hydrogen Evolution Electrocatalysis. <i>Small Science</i> , 2021 , 1, 2000027		20
167	Defective carbon-based materials: controllable synthesis and electrochemical applications. <i>EnergyChem</i> , 2021 , 100059	36.9	3
166	Defective Structures in Metal Compounds for Energy-Related Electrocatalysis. <i>Small Structures</i> , 2021 , 2, 2000067	8.7	54
165	Defect engineering and characterization of active sites for efficient electrocatalysis. <i>Nanoscale</i> , 2021 , 13, 3327-3345	7.7	14
164	Controlled Asymmetric Charge Distribution of Active Centers in Conjugated Polymers for Oxygen Reduction. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 26483-26488	16.4	11
163	Controllable synthesis of FeN4 species for acidic oxygen reduction 2020 , 2, 452-460		22
162	Sulfur-Modified Oxygen Vacancies in Iron@obalt Oxide Nanosheets: Enabling Extremely High Activity of the Oxygen Evolution Reaction to Achieve the Industrial Water Splitting Benchmark. Angewandte Chemie, 2020, 132, 14772-14778	3.6	10
161	Sulfur-Modified Oxygen Vacancies in Iron-Cobalt Oxide Nanosheets: Enabling Extremely High Activity of the Oxygen Evolution Reaction to Achieve the Industrial Water Splitting Benchmark. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 14664-14670	16.4	73
160	A Directional Synthesis for Topological Defect in Carbon. <i>CheM</i> , 2020 , 6, 2009-2023	16.2	49
159	Clarifying the Origin of Oxygen Reduction Activity in Heteroatom-Modified Defective Carbon. <i>Cell Reports Physical Science</i> , 2020 , 1, 100083	6.1	18
158	Atom-Coordinated Structure Triggers Selective H2O2 Production. <i>CheM</i> , 2020 , 6, 548-550	16.2	23
157	Edge-Rich Fe-N Active Sites in Defective Carbon for Oxygen Reduction Catalysis. <i>Advanced Materials</i> , 2020 , 32, e2000966	24	113
156	Gradient-Concentration Design of Stable Core-Shell Nanostructure for Acidic Oxygen Reduction Electrocatalysis. <i>Advanced Materials</i> , 2020 , 32, e2003493	24	30
155	A cascade surface immobilization strategy to access high-density and closely distanced atomic Pt sites for enhancing alkaline hydrogen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 525	55 ⁻⁵ 262	14

154	Understanding the Activity of Co-N4⊠Cx in Atomic Metal Catalysts for Oxygen Reduction Catalysis. <i>Angewandte Chemie</i> , 2020 , 132, 6178-6183	3.6	30
153	Understanding the Activity of Co-N C in Atomic Metal Catalysts for Oxygen Reduction Catalysis. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 6122-6127	16.4	86
152	Recent advances in liquid-phase chemical hydrogen storage. Energy Storage Materials, 2020, 26, 290-31	2 19.4	61
151	One-step In-situ Synthesis of Vacancy-rich CoFe2O4@Defective Graphene Hybrids as Bifunctional Oxygen Electrocatalysts for Rechargeable Zn-Air Batteries. <i>Chemical Research in Chinese Universities</i> , 2020 , 36, 479-487	2.2	14
150	Bimetallic ZIF derived Co nanoparticle anchored N-doped porous carbons for an efficient oxygen reduction reaction. <i>Inorganic Chemistry Frontiers</i> , 2020 , 7, 946-952	6.8	10
149	Metal-Free Thiophene-Sulfur Covalent Organic Frameworks: Precise and Controllable Synthesis of Catalytic Active Sites for Oxygen Reduction. <i>Journal of the American Chemical Society</i> , 2020 , 142, 8104-	816 8	105
148	Exfoliation of amorphous phthalocyanine conjugated polymers into ultrathin nanosheets for highly efficient oxygen reduction. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 3112-3119	13	55
147	Air cathode of zinc-air batteries: a highly efficient and durable aerogel catalyst for oxygen reduction. <i>Nanoscale</i> , 2019 , 11, 826-832	7.7	36
146	Defect Engineering and Surface Functionalization of Nanocarbons for Metal-Free Catalysis. <i>Advanced Materials</i> , 2019 , 31, e1805717	24	88
145	Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping. <i>Nature Catalysis</i> , 2019 , 2, 688-695	36.5	251
144	Charge Polarization from Atomic Metals on Adjacent Graphitic Layers for Enhancing the Hydrogen Evolution Reaction. <i>Angewandte Chemie</i> , 2019 , 131, 9504-9508	3.6	1
143	Insight into the design of defect electrocatalysts: From electronic structure to adsorption energy. <i>Materials Today</i> , 2019 , 31, 47-68	21.8	173
142	Charge Polarization from Atomic Metals on Adjacent Graphitic Layers for Enhancing the Hydrogen Evolution Reaction. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 9404-9408	16.4	50
141	Catalytic Nanocarbons: Defect Engineering and Surface Functionalization of Nanocarbons for Metal-Free Catalysis (Adv. Mater. 13/2019). <i>Advanced Materials</i> , 2019 , 31, 1970096	24	2
140	The Role of Defect Sites in Nanomaterials for Electrocatalytic Energy Conversion. <i>CheM</i> , 2019 , 5, 1371-	1302	170
139	Probing the Active Sites of Carbon-Encapsulated Cobalt Nanoparticles for Oxygen Reduction. <i>Small Methods</i> , 2019 , 3, 1800439	12.8	21
138	A Surfactant-Free and Scalable General Strategy for Synthesizing Ultrathin Two-Dimensional Metal®rganic Framework Nanosheets for the Oxygen Evolution Reaction. <i>Angewandte Chemie</i> , 2019 , 131, 13699-13706	3.6	37
137	A Surfactant-Free and Scalable General Strategy for Synthesizing Ultrathin Two-Dimensional Metal-Organic Framework Nanosheets for the Oxygen Evolution Reaction. <i>Angewandte Chemie -</i> International Edition 2019, 58, 13565-13572	16.4	121

136	Innenr©lktitelbild: Charge Polarization from Atomic Metals on Adjacent Graphitic Layers for Enhancing the Hydrogen Evolution Reaction (Angew. Chem. 28/2019). <i>Angewandte Chemie</i> , 2019 , 131, 9749-9749	3.6	
135	Defect-Induced Pt-Co-Se Coordinated Sites with Highly Asymmetrical Electronic Distribution for Boosting Oxygen-Involving Electrocatalysis. <i>Advanced Materials</i> , 2019 , 31, e1805581	24	118
134	Generating Oxygen Vacancies in MnO Hexagonal Sheets for Ultralong Life Lithium Storage with High Capacity. <i>ACS Nano</i> , 2019 , 13, 2062-2071	16.7	47
133	Defective Carbons Derived from Macadamia Nut Shell Biomass for Efficient Oxygen Reduction and Supercapacitors. <i>ChemElectroChem</i> , 2018 , 5, 1874-1879	4.3	29
132	Defect electrocatalytic mechanism: concept, topological structure and perspective. <i>Materials Chemistry Frontiers</i> , 2018 , 2, 1250-1268	7.8	90
131	An ethynyl-linked Fe/Co heterometallic phthalocyanine conjugated polymer for the oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 8349-8357	13	40
130	Generating lithium vacancies through delithiation of Li(NixCoyMnz)O2 towards bifunctional electrocatalysts for rechargeable zinc-air batteries. <i>Energy Storage Materials</i> , 2018 , 15, 202-208	19.4	18
129	Graphene Defects Trap Atomic Ni Species for Hydrogen and Oxygen Evolution Reactions. <i>CheM</i> , 2018 , 4, 285-297	16.2	436
128	On the hydrogen desorption entropy change of modified MgH2. <i>Journal of Alloys and Compounds</i> , 2018 , 737, 427-432	5.7	8
127	Electronic Structure Tuning in NiFeN/r-GO Aerogel toward Bifunctional Electrocatalyst for Overall Water Splitting. <i>ACS Nano</i> , 2018 , 12, 245-253	16.7	347
126	Assessment of sugarcane bagasse gasification in supercritical water for hydrogen production. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 13711-13719	6.7	35
125	Direct catalytic conversion of glucose and cellulose. <i>Green Chemistry</i> , 2018 , 20, 863-872	10	45
124	Activity Origins in Nanocarbons for the Electrocatalytic Hydrogen Evolution Reaction. <i>Small</i> , 2018 , 14, e1800235	11	42
123	Boosting hydrogen evolution via optimized hydrogen adsorption at the interface of CoP3 and Ni2P. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 5560-5565	13	76
122	Tuning oxygen vacancies in two-dimensional iron-cobalt oxide nanosheets through hydrogenation for enhanced oxygen evolution activity. <i>Nano Research</i> , 2018 , 11, 3509-3518	10	110
121	Dehydrogenation and reaction pathway of Perovskite-Type NH4Ca(BH4)3. <i>Progress in Natural Science: Materials International</i> , 2018 , 28, 194-199	3.6	4
120	Coordination of Atomic Co-Pt Coupling Species at Carbon Defects as Active Sites for Oxygen Reduction Reaction. <i>Journal of the American Chemical Society</i> , 2018 , 140, 10757-10763	16.4	301
119	A Defect-Driven Metal-free Electrocatalyst for Oxygen Reduction in Acidic Electrolyte. <i>CheM</i> , 2018 , 4, 2345-2356	16.2	193

(2017-2018)

118	as Bifunctional Cathode Electrocatalyst in Rechargeable Zinc-Air Batteries. <i>Advanced Energy Materials</i> , 2018 , 8, 1801495	21.8	44
117	Defects on carbons for electrocatalytic oxygen reduction. <i>Chemical Society Reviews</i> , 2018 , 47, 7628-7658	8 58.5	282
116	Plasma-Triggered Synergy of Exfoliation, Phase Transformation, and Surface Engineering in Cobalt Diselenide for Enhanced Water Oxidation. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 16421-1	6 425	84
115	Plasma-Triggered Synergy of Exfoliation, Phase Transformation, and Surface Engineering in Cobalt Diselenide for Enhanced Water Oxidation. <i>Angewandte Chemie</i> , 2018 , 130, 16659-16663	3.6	29
114	Defective Carbons for Electrocatalytic Oxygen Reduction 2018 , 59-75		O
113	Grafting Cobalt Diselenide on Defective Graphene for Enhanced Oxygen Evolution Reaction. <i>IScience</i> , 2018 , 7, 145-153	6.1	29
112	Scalable and controllable synthesis of atomic metal electrocatalysts assisted by an egg-box in alginate. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 18417-18425	13	38
111	Ultrathin Iron-Cobalt Oxide Nanosheets with Abundant Oxygen Vacancies for the Oxygen Evolution Reaction. <i>Advanced Materials</i> , 2017 , 29, 1606793	24	821
110	A Heterostructure Coupling of Exfoliated Ni-Fe Hydroxide Nanosheet and Defective Graphene as a Bifunctional Electrocatalyst for Overall Water Splitting. <i>Advanced Materials</i> , 2017 , 29, 1700017	24	651
109	Gasification of diosgenin solid waste for hydrogen production in supercritical water. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 9448-9457	6.7	21
108	NaBH 4 regeneration from NaBO 2 by high-energy ball milling and its plausible mechanism. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 13127-13135	6.7	28
107	System analysis of pulping process coupled with supercritical water gasification of black liquor for combined hydrogen, heat and power production. <i>Energy</i> , 2017 , 132, 238-247	7.9	51
106	Hydrogen generation via hydrolysis of magnesium with seawater using Mo, MoO2, MoO3 and MoS2 as catalysts. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 8566-8575	13	76
105	Switched Photocurrent on Tin Sulfide-Based Nanoplate Photoelectrodes. <i>ChemSusChem</i> , 2017 , 10, 670-0	687. 4	17
104	Defective graphene anchored iron-cobalt nanoparticles for efficient electrocatalytic oxygen reduction. <i>Chemical Communications</i> , 2017 , 53, 12140-12143	5.8	19
103	Hexagonal Sphericon Hematite with High Performance for Water Oxidation. <i>Advanced Materials</i> , 2017 , 29, 1703792	24	39
102	Platinum stabilized by defective activated carbon with excellent oxygen reduction performance in alkaline media. <i>Chinese Journal of Catalysis</i> , 2017 , 38, 1011-1020	11.3	8
101	Brfisted base site engineering of graphitic carbon nitride for enhanced photocatalytic activity. Journal of Materials Chemistry A, 2017 , 5, 19227-19236	13	24

100	Carbon scaffold modified by metal (Ni) or non-metal (N) to enhance hydrogen storage of MgH2 through nanoconfinement. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 22933-22941	6.7	44
99	Recent Progress in Oxygen Electrocatalysts for ZincAir Batteries. <i>Small Methods</i> , 2017 , 1, 1700209	12.8	142
98	Toward Aerogel Electrodes of Superior Rate Performance in Supercapacitors through Engineered Hollow Nanoparticles of NiCoO. <i>Advanced Science</i> , 2017 , 4, 1700345	13.6	32
97	Defective-Activated-Carbon-Supported Mn-Co Nanoparticles as a Highly Efficient Electrocatalyst for Oxygen Reduction. <i>Advanced Materials</i> , 2016 , 28, 8771-8778	24	139
96	Defect Graphene as a Trifunctional Catalyst for Electrochemical Reactions. <i>Advanced Materials</i> , 2016 , 28, 9532-9538	24	711
95	NbO-EAlO nanofibers as heterogeneous catalysts for efficient conversion of glucose to 5-hydroxymethylfurfural. <i>Scientific Reports</i> , 2016 , 6, 34068	4.9	22
94	Boosting oxygen reduction and hydrogen evolution at the edge sites of a web-like carbon nanotube-graphene hybrid. <i>Carbon</i> , 2016 , 107, 739-746	10.4	22
93	Molecular engineering of Ni-/Co-porphyrin multilayers on reduced graphene oxide sheets as bifunctional catalysts for oxygen evolution and oxygen reduction reactions. <i>Chemical Science</i> , 2016 , 7, 5640-5646	9.4	108
92	Activated carbon becomes active for oxygen reduction and hydrogen evolution reactions. <i>Chemical Communications</i> , 2016 , 52, 8156-9	5.8	114
91	Defect-driven oxygen reduction reaction (ORR) of carbon without any element doping. <i>Inorganic Chemistry Frontiers</i> , 2016 , 3, 417-421	6.8	117
90	Seaweed biomass derived (Ni,Co)/CNT nanoaerogels: efficient bifunctional electrocatalysts for oxygen evolution and reduction reactions. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 6376-6384	13	135
89	Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. <i>Nature Communications</i> , 2016 , 7, 10667	17.4	435
88	Scalable and Cost-Effective Synthesis of Highly Efficient Fe2N-Based Oxygen Reduction Catalyst Derived from Seaweed Biomass. <i>Small</i> , 2016 , 12, 1295-301	11	131
87	Hydrogen production from supercritical water gasification of chicken manure. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 22722-22731	6.7	81
86	Combination of nanosizing and interfacial effect: Future perspective for designing Mg-based nanomaterials for hydrogen storage. <i>Renewable and Sustainable Energy Reviews</i> , 2015 , 44, 289-303	16.2	128
85	Express penetration of hydrogen on Mg(10 13) along the close-packed-planes. <i>Scientific Reports</i> , 2015 , 5, 10776	4.9	81
84	Sustainable seaweed-based one-dimensional (1D) nanofibers as high-performance electrocatalysts for fuel cells. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 14188-14194	13	64
83	Metallic Ni nanocatalyst in situ formed from a metal b rganic-framework by mechanochemical reaction for hydrogen storage in magnesium. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 8294-8299	13	49

(2014-2015)

82	Carbon for the oxygen reduction reaction: a defect mechanism. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 11736-11739	13	184
81	Nanosheets Co3O4 Interleaved with Graphene for Highly Efficient Oxygen Reduction. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 21373-80	9.5	87
80	Catalytically Enhanced Hydrogen Sorption in Mg-MgH2 by Coupling Vanadium-Based Catalyst and Carbon Nanotubes. <i>Materials</i> , 2015 , 8, 3491-3507	3.5	17
79	Supercritical Water Gasification of Coal with Waste Black Liquor as Inexpensive Additives. <i>Energy & Energy Fuels</i> , 2015 , 29, 384-391	4.1	50
78	Potassium niobate nanolamina: a promising adsorbent for entrapment of radioactive cations from water. <i>Scientific Reports</i> , 2014 , 4, 7313	4.9	21
77	New electroless plating method for preparation of highly active Co B catalysts for NaBH4 hydrolysis. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 414-425	6.7	44
76	Manipulating solar absorption and electron transport properties of rutile TiO2 photocatalysts via highly n-type F-doping. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 3513	13	49
75	Density functional theory analysis of structural and electronic properties of orthorhombic perovskite CH3NH3PbI3. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 1424-9	3.6	284
74	Towards easy reversible dehydrogenation of LiBH4 by catalyzing hierarchic nanostructured CoB. <i>Nano Energy</i> , 2014 , 10, 235-244	17.1	40
73	Destabilization of LiBH4 dehydrogenation through H+HIInteractions by cooperating with alkali metal hydroxides. <i>RSC Advances</i> , 2014 , 4, 3082-3089	3.7	14
72	MgIIM (TM: Ti, Nb, V, Co, Mo or Ni) corelinell like nanostructures: synthesis, hydrogen storage performance and catalytic mechanism. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 9645-9655	13	167
71	In Situ Photochemical Synthesis of Zn-Doped Cu2O Hollow Microcubes for High Efficient Photocatalytic H2 Production. <i>ACS Sustainable Chemistry and Engineering</i> , 2014 , 2, 1446-1452	8.3	70
70	Synthesis and characterization of three novel 3D metal®rganic frameworks constructed from semi-rigid V-shaped ligands. <i>Inorganic Chemistry Communication</i> , 2014 , 46, 329-334	3.1	7
69	A self-sponsored doping approach for controllable synthesis of S and N co-doped trimodal-porous structured graphitic carbon electrocatalysts. <i>Energy and Environmental Science</i> , 2014 , 7, 3720-3726	35.4	180
68	One-step synthesis of nitrogen-doped microporous carbon materials as metal-free electrocatalysts for oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 11666-11671	13	70
67	Fluorine-doped porous single-crystal rutile TiO2 nanorods for enhancing photoelectrochemical water splitting. <i>Chemistry - A European Journal</i> , 2014 , 20, 11439-44	4.8	55
66	Geometric structure of rutile titanium dioxide (111) surfaces. <i>Physical Review B</i> , 2014 , 90,	3.3	17
65	Preparation of nitrogen-doped TiOl⁄graphene nanohybrids and application as counter electrode for dye-sensitized solar cells. <i>ACS Applied Materials & Description of the Property of the Prope</i>	9.5	41

64	Catalytic Hydrogenation of Carbon Dioxide to Fuels. Current Organic Chemistry, 2014, 18, 1335-1345	1.7	15
63	Effect of titanium based complex catalyst and carbon nanotubes on hydrogen storage performance of magnesium. <i>Science China Chemistry</i> , 2013 , 56, 451-458	7.9	3
62	Theoretical understanding and prediction of lithiated sodium hexatitanates. <i>ACS Applied Materials & Amp; Interfaces</i> , 2013 , 5, 1108-12	9.5	9
61	A highly crystalline Nb3O7F nanostructured photoelectrode: fabrication and photosensitisation. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 6563	13	28
60	Remarkable enhancement in dehydrogenation of MgH2 by a nano-coating of multi-valence Ti-based catalysts. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 5603	13	164
59	Nature of visible-light responsive fluorinated titanium dioxides. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 12948	13	24
58	Evaluation of a cobaltholybdenumboron catalyst for hydrogen generation of alkaline sodium borohydride solutionEluminum powder system. <i>Journal of Power Sources</i> , 2013 , 224, 304-311	8.9	36
57	Vapor-phase hydrothermal growth of novel segmentally configured nanotubular crystal structure. <i>Small</i> , 2013 , 9, 3043-50	11	8
56	Destabilization of Mg-H bonding through nano-interfacial confinement by unsaturated carbon for hydrogen desorption from MgH2. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 5814-20	3.6	62
55	Designed synthesis of LiMn2O4 microspheres with adjustable hollow structures for lithium-ion battery applications. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 837-842	13	50
54	Target synthesis of a novel porous aromatic framework and its highly selective separation of CO(2)/CH(4). <i>Chemical Communications</i> , 2013 , 49, 2780-2	5.8	102
53	Edges of FeO/Pt(111) Interface: A First-Principle Theoretical Study. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 1672-1676	3.8	8
52	Enhanced hydrogen desorption from Mg(BH4)2 by combining nanoconfinement and a Ni catalyst. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 3471	13	76
51	Engineering the band gap of bare titanium dioxide materials for visible-light activity: a theoretical prediction. <i>RSC Advances</i> , 2013 , 3, 8777	3.7	29
50	A novel 3D porous cadmium(II) MOF based on conjugated ligand with potential application for sensing small linear conjugated molecule. <i>Inorganic Chemistry Communication</i> , 2012 , 25, 74-78	3.1	16
49	Fabrication of mesoporous lignocellulose aerogels from wood via cyclic liquid nitrogen freezingthawing in ionic liquid solution. <i>Journal of Materials Chemistry</i> , 2012 , 22, 13548		95
48	Structure, reactivity, photoactivity and stability of Ti-O based materials: a theoretical comparison. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 2333-8	3.6	40
47	Dehydrogenation of Ammonia Borane Confined by Low-Density Porous Aromatic Framework. Journal of Physical Chemistry C, 2012 , 116, 25694-25700	3.8	28

46	Yolk@shell anatase TiO2 hierarchical microspheres with exposed {001} facets for high-performance dye sensitized solar cells. <i>Journal of Materials Chemistry</i> , 2012 , 22, 22082		92
45	Selective adsorption of carbon dioxide by carbonized porous aromatic framework (PAF). <i>Energy and Environmental Science</i> , 2012 , 5, 8370	35.4	200
44	Catalytically enhanced dehydrogenation of MgH2 by activated carbon supported PdVOx (x=2.38) nanocatalyst. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 13393-13399	6.7	15
43	Confined LiBH4: Enabling fast hydrogen release at ~100 IC. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 18920-18926	6.7	38
42	Visible light active pure rutile TiO2 photoanodes with 100% exposed pyramid-shaped (111) surfaces. <i>Nano Research</i> , 2012 , 5, 762-769	10	46
41	Single crystal ⊞e2O3 with exposed {104} facets for high performance gas sensor applications. <i>RSC Advances</i> , 2012 , 2, 6178	3.7	70
40	Hydrogenation/dehydrogenation in MgH2-activated carbon composites prepared by ball milling. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 7579-7585	6.7	43
39	Synthesis of ordered mesoporous MgO/carbon composites by a one-pot assembly of amphiphilic triblock copolymers. <i>Journal of Materials Chemistry</i> , 2011 , 21, 795-800		60
38	Anatase TiOltrystal facet growth: mechanistic role of hydrofluoric acid and photoelectrocatalytic activity. <i>ACS Applied Materials & amp; Interfaces</i> , 2011 , 3, 2472-8	9.5	95
37	Nanoparticles enwrapped with nanotubes: A unique architecture of CdS/titanate nanotubes for efficient photocatalytic hydrogen production from water. <i>Journal of Materials Chemistry</i> , 2011 , 21, 5134		102
36	Adsorption and Dissociation of Ammonia Borane Outside and Inside Single-Walled Carbon Nanotubes: A Density Functional Theory Study. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 12580-12585	3.8	6
35	A selective etching phenomenon on {001} faceted anatase titanium dioxide single crystal surfaces by hydrofluoric acid. <i>Chemical Communications</i> , 2011 , 47, 2829-31	5.8	117
34	Catalytic De/Hydrogenation in Mg by Co-Doped Ni and VOx on Active Carbon: Extremely Fast Kinetics at Low Temperatures and High Hydrogen Capacity. <i>Advanced Energy Materials</i> , 2011 , 1, 387-393	21.8	48
33	Synergetic effects of hydrogenated Mg3La and TiCl3 on the dehydrogenation of LiBH4. <i>Journal of Materials Chemistry</i> , 2011 , 21, 9179		44
32	A facile vapor-phase hydrothermal method for direct growth of titanate nanotubes on a titanium substrate via a distinctive nanosheet roll-up mechanism. <i>Journal of the American Chemical Society</i> , 2011 , 133, 19032-5	16.4	90
31	Twins in Cd1\(\mathbb{Z}\)rxS solid solution: Highly efficient photocatalyst for hydrogen generation from water. Energy and Environmental Science, 2011, 4, 1372	35.4	270
30	Hydrogen Incorporation and Storage in Well-Defined Nanocrystals of Anatase Titanium Dioxide. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 25590-25594	3.8	92
29	Origin of reactivity diversity of lattice oxygen in titanates. <i>Chemical Physics Letters</i> , 2011 , 511, 82-86	2.5	11

28	Progress in sodium borohydride as a hydrogen storage material: Development of hydrolysis catalysts and reaction systems. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 5983-5997	6.7	258
27	Zinc sulfide nanowire arrays on silicon wafers for field emitters. <i>Nanotechnology</i> , 2010 , 21, 065701	3.4	19
26	Fabrication of highly ordered TiO2 nanorod/nanotube adjacent arrays for photoelectrochemical applications. <i>Langmuir</i> , 2010 , 26, 11226-32	4	59
25	Ammonia borane confined by a metal-organic framework for chemical hydrogen storage: enhancing kinetics and eliminating ammonia. <i>Journal of the American Chemical Society</i> , 2010 , 132, 1490-	16.4	230
24	Anatase TiO(2) microspheres with exposed mirror-like plane {001} facets for high performance dye-sensitized solar cells (DSSCs). <i>Chemical Communications</i> , 2010 , 46, 8395-7	5.8	159
23	Ordered Mesoporous Carbons Enriched with Nitrogen: Application to Hydrogen Storage. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 8639-8645	3.8	55
22	Roles of trifluoroacetic acid, acetic acid and their salts in the synthesis of helical mesoporous materials. <i>Journal of Porous Materials</i> , 2010 , 17, 123-131	2.4	2
21	Hydrogen adsorption on NiNaY composites at room and cryogenic temperatures. <i>Catalysis Today</i> , 2010 , 158, 317-323	5.3	2
20	Lithium-Catalyzed Dehydrogenation of Ammonia Borane within Mesoporous Carbon Framework for Chemical Hydrogen Storage. <i>Advanced Functional Materials</i> , 2009 , 19, 265-271	15.6	148
19	Field Emission and Cathodoluminescence of ZnS Hexagonal Pyramids of Zinc Blende Structured Single Crystals. <i>Advanced Functional Materials</i> , 2009 , 19, 484-490	15.6	42
18	Electron-tomography determination of the packing structure of macroporous ordered siliceous foams assembled from vesicles. <i>Small</i> , 2009 , 5, 377-82	11	21
17	Synthesis and characterization of (h0l) oriented high-silica zeolite beta membrane. <i>Microporous and Mesoporous Materials</i> , 2009 , 124, 8-14	5.3	24
16	Controlled evolution from multilamellar vesicles to hexagonal mesostructures through the addition of 1,3,5-trimethylbenzene. <i>Journal of Colloid and Interface Science</i> , 2009 , 336, 368-73	9.3	13
15	Self-assembly and cathodoluminescence of microbelts from Cu-doped boron nitride nanotubes. <i>ACS Nano</i> , 2008 , 2, 1523-32	16.7	36
14	Fluorination-induced magnetism in boron nitride nanotubes from ab initio calculations. <i>Applied Physics Letters</i> , 2008 , 92, 102515	3.4	48
13	Magnesium-based materials for hydrogen storage: Recent advances and future perspectives. <i>Science Bulletin</i> , 2008 , 53, 2421-2431	10.6	32
12	Solving complex concentric circular mesostructures by using electron tomography. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 6670-3	16.4	24
11	Growth, Cathodoluminescence and Field Emission of ZnS Tetrapod Tree-like Heterostructures. <i>Advanced Functional Materials</i> , 2008 , 18, 3063-3069	15.6	47

LIST OF PUBLICATIONS

10	Ammonia borane destabilized by lithium hydride: an advanced on-board hydrogen storage material. <i>Advanced Materials</i> , 2008 , 20, 2756-9	24	172
9	Solving Complex Concentric Circular Mesostructures by Using Electron Tomography. <i>Angewandte Chemie</i> , 2008 , 120, 6772-6775	3.6	3
8	Phosphate removal from wastewater using red mud. <i>Journal of Hazardous Materials</i> , 2008 , 158, 35-42	12.8	329
7	Catalytic decomposition of ammonia over fly ash supported Ru catalysts. <i>Fuel Processing Technology</i> , 2008 , 89, 1106-1112	7.2	22
6	Synthesis and characterization of chromium oxide nanocrystals via solid thermal decomposition at low temperature. <i>Microporous and Mesoporous Materials</i> , 2008 , 112, 621-626	5.3	24
5	Metallic and carbon nanotube-catalyzed coupling of hydrogenation in magnesium. <i>Journal of the American Chemical Society</i> , 2007 , 129, 15650-4	16.4	114
4	Modelling of grain size transition with alloy concentration in solidified AlBi alloys. <i>Journal of Materials Science</i> , 2007 , 42, 9756-9764	4.3	6
3	Mg-based nanocomposites with high capacity and fast kinetics for hydrogen storage. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 11697-703	3.4	80
2	Effects of SWNT and metallic catalyst on hydrogen absorption/desorption performance of MgH2. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 22217-21	3.4	82
1	Controlled Asymmetric Charge Distribution of Active Centers in Conjugated Polymers for Oxygen Reduction. <i>Angewandte Chemie</i> ,	3.6	0