## Nail Fatkhutdinov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2986537/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | NAD+ metabolism governs the proinflammatory senescence-associated secretome. Nature Cell Biology, 2019, 21, 397-407.                                    | 10.3 | 232       |
| 2  | HMGB2 orchestrates the chromatin landscape of senescence-associated secretory phenotype gene<br>loci. Journal of Cell Biology, 2016, 215, 325-334.      | 5.2  | 132       |
| 3  | BET Bromodomain Inhibition Synergizes with PARP Inhibitor in Epithelial Ovarian Cancer. Cell Reports, 2017, 21, 3398-3405.                              | 6.4  | 130       |
| 4  | N6-Methylation of Adenosine of <i>FZD10</i> mRNA Contributes to PARP Inhibitor Resistance. Cancer<br>Research, 2019, 79, 2812-2820.                     | 0.9  | 127       |
| 5  | HDAC6 Inhibition Synergizes with Anti-PD-L1 Therapy in ARID1A-Inactivated Ovarian Cancer. Cancer Research, 2019, 79, 5482-5489.                         | 0.9  | 86        |
| 6  | NAMPT Inhibition Suppresses Cancer Stem-like Cells Associated with Therapy-Induced Senescence in Ovarian Cancer. Cancer Research, 2020, 80, 890-900.    | 0.9  | 83        |
| 7  | EZH2 Inhibition Sensitizes CARM1-High, Homologous Recombination Proficient Ovarian Cancers to PARP Inhibition. Cancer Cell, 2020, 37, 157-167.e6.       | 16.8 | 79        |
| 8  | Repurposing Pan-HDAC Inhibitors for ARID1A-Mutated Ovarian Cancer. Cell Reports, 2018, 22, 3393-3400.                                                   | 6.4  | 77        |
| 9  | ARID1A promotes genomic stability through protecting telomere cohesion. Nature Communications, 2019, 10, 4067.                                          | 12.8 | 40        |
| 10 | SWI/SNF catalytic subunits' switch drives resistance to EZH2 inhibitors in ARID1A-mutated cells.<br>Nature Communications, 2018, 9, 4116.               | 12.8 | 38        |
| 11 | Topoisomerase 1 cleavage complex enables pattern recognition and inflammation during senescence.<br>Nature Communications, 2020, 11, 908.               | 12.8 | 36        |
| 12 | Targeting glutamine dependence through GLS1 inhibition suppresses ARID1A-inactivated clear cell ovarian carcinoma. Nature Cancer, 2021, 2, 189-200.     | 13.2 | 36        |
| 13 | ARID1A spatially partitions interphase chromosomes. Science Advances, 2019, 5, eaaw5294.                                                                | 10.3 | 35        |
| 14 | Targeting RRM2 and Mutant BRAF Is a Novel Combinatorial Strategy for Melanoma. Molecular Cancer<br>Research, 2016, 14, 767-775.                         | 3.4  | 27        |
| 15 | ARID2 Deficiency Correlates with the Response to Immune Checkpoint Blockade in Melanoma. Journal of Investigative Dermatology, 2021, 141, 1564-1572.e4. | 0.7  | 20        |
| 16 | Harnessing mutual exclusivity between TP53 and ARID1 A mutations. Cell Cycle, 2017, 16, 2313-2314.                                                      | 2.6  | 7         |