Jinsang Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2986507/publications.pdf

Version: 2024-02-01

136	10,556	50	101
papers	citations	h-index	g-index
149	149	149	11561 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Activating efficient phosphorescence from purely organic materials by crystal design. Nature Chemistry, 2011, 3, 205-210.	13.6	1,274
2	Organic Solar Cells Using Nanoimprinted Transparent Metal Electrodes. Advanced Materials, 2008, 20, 4408-4413.	21.0	492
3	Control of conformational and interpolymer effects in conjugated polymers. Nature, 2001, 411, 1030-1034.	27.8	464
4	Room Temperature Phosphorescence of Metal-Free Organic Materials in Amorphous Polymer Matrices. Journal of the American Chemical Society, 2013, 135, 6325-6329.	13.7	449
5	High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nature Materials, 2015, 14, 295-300.	27.5	448
6	Tailoring Intermolecular Interactions for Efficient Roomâ€Temperature Phosphorescence from Purely Organic Materials in Amorphous Polymer Matrices. Angewandte Chemie - International Edition, 2014, 53, 11177-11181.	13.8	382
7	Suppressing molecular motions for enhanced room-temperature phosphorescence of metal-free organic materials. Nature Communications, 2015, 6, 8947.	12.8	344
8	Molecular Design Principle of Allâ€organic Dyes for Dyeâ€Sensitized Solar Cells. Chemistry - A European Journal, 2013, 19, 5220-5230.	3.3	284
9	A Poly(p-phenyleneethynylene) with a Highly Emissive Aggregated Phase. Journal of the American Chemical Society, 2000, 122, 8565-8566.	13.7	252
10	A molecular design principle of lyotropic liquid-crystalline conjugated polymers with directed alignment capability for plastic electronics. Nature Materials, 2013, 12, 659-664.	27.5	243
11	Polydiacetylene Liposome Arrays for Selective Potassium Detection. Journal of the American Chemical Society, 2008, 130, 5010-5011.	13.7	240
12	Effective Variables To Control the Fill Factor of Organic Photovoltaic Cells. ACS Applied Materials & 2009, 1, 1264-1269.	8.0	235
13	Polydiacetylene–Liposome Microarrays for Selective and Sensitive Mercury(II) Detection. Advanced Materials, 2009, 21, 3674-3677.	21.0	201
14	Ion-Specific Aggregation in Conjugated Polymers: Highly Sensitive and Selective Fluorescent Ion Chemosensors. Angewandte Chemie - International Edition, 2000, 39, 3868-3872.	13.8	187
15	Recent advances in fluorescent and colorimetric conjugated polymer-based biosensors. Analyst, The, 2010, 135, 2179.	3.5	168
16	Flexible conjugated polymer photovoltaic cells with controlled heterojunctions fabricated using nanoimprint lithography. Applied Physics Letters, 2007, 90, 123113.	3.3	167
17	Energy Migration in a Poly(phenylene ethynylene):Â Determination of Interpolymer Transport in Anisotropic Langmuirâ [°] Blodgett Films. Journal of the American Chemical Society, 1999, 121, 1466-1472.	13.7	162
18	Roomâ€Temperatureâ€Phosphorescenceâ€Based Dissolved Oxygen Detection by Coreâ€Shell Polymer Nanoparticles Containing Metalâ€Free Organic Phosphors. Angewandte Chemie - International Edition, 2017, 56, 16207-16211.	13.8	155

#	Article	IF	CITATIONS
19	Energy Level Modulation of HOMO, LUMO, and Bandâ€Gap in Conjugated Polymers for Organic Photovoltaic Applications. Advanced Functional Materials, 2013, 23, 439-445.	14.9	152
20	Organic Dye Design Tools for Efficient Photocurrent Generation in Dyeâ€Sensitized Solar Cells: Exciton Binding Energy and Electron Acceptors. Advanced Functional Materials, 2012, 22, 1606-1612.	14.9	143
21	Tunable Thermalâ€ S ensitive Polymer–Graphene Oxide Composite for Efficient Capture and Release of Viable Circulating Tumor Cells. Advanced Materials, 2016, 28, 4891-4897.	21.0	130
22	Two-Dimensional Conjugated Polymer Assemblies:Â Interchain Spacing for Control of Photophysics. Journal of the American Chemical Society, 2000, 122, 5885-5886.	13.7	120
23	Colorimetric Detection of Warfare Gases by Polydiacetylenes Toward Equipmentâ€Free Detection. Advanced Functional Materials, 2012, 22, 1632-1638.	14.9	120
24	Tuning the Photophysical Properties of Metal-Free Room Temperature Organic Phosphors via Compositional Variations in Bromobenzaldehyde/Dibromobenzene Mixed Crystals. Chemistry of Materials, 2014, 26, 6644-6649.	6.7	115
25	Labelâ€Free and Selfâ€Signal Amplifying Molecular DNA Sensors Based on Bioconjugated Polyelectrolytes. Advanced Functional Materials, 2007, 17, 2580-2587.	14.9	114
26	Ultrasonic-Assisted Nanodimensional Self-Assembly of Poly-3-hexylthiophene for Organic Photovoltaic Cells. ACS Nano, 2010, 4, 2160-2166.	14.6	96
27	Signal-Amplifying Conjugated Polymer–DNA Hybrid Chips. Angewandte Chemie - International Edition, 2007, 46, 4667-4670.	13.8	94
28	High thermal conductivity in electrostatically engineered amorphous polymers. Science Advances, 2017, 3, e1700342.	10.3	90
29	Nanoscale Fibrils and Grids:Â Aggregated Structures from Rigid-Rod Conjugated Polymers. Macromolecules, 1999, 32, 1500-1507.	4.8	88
30	Heavy Atom Effect of Selenium for Metal-Free Phosphorescent Light-Emitting Diodes. Chemistry of Materials, 2020, 32, 2583-2592.	6.7	86
31	Choice of electrode geometry for accurate measurement of organic photovoltaic cell performance. Applied Physics Letters, 2008, 92, 133301.	3.3	84
32	Selective and sensitive detection of melamine by intra/inter liposomal interaction of polydiacetylene liposomes. Chemical Communications, 2011, 47, 358-360.	4.1	77
33	Shear-Triggered Crystallization and Light Emission of a Thermally Stable Organic Supercooled Liquid. ACS Central Science, 2015, 1, 94-102.	11.3	77
34	Directing Energy Transfer within Conjugated Polymer Thin Films. Journal of the American Chemical Society, 2001, 123, 11488-11489.	13.7	76
35	Assemblies of conjugated polymers: Intermolecular and intramolecular effects on the photophysical properties of conjugated polymers. Pure and Applied Chemistry, 2002, 74, 2031-2044.	1.9	74
36	Structural Control in Thin Layers of Poly(p-phenyleneethynylene)s:  Photophysical Studies of Langmuir and Langmuirâ^'Blodgett Films. Journal of the American Chemical Society, 2002, 124, 7710-7718.	13.7	74

#	Article	IF	Citations
37	Multiphasic Sensory Alginate Particle Having Polydiacetylene Liposome for Selective and More Sensitive Multitargeting Detection. Chemistry of Materials, 2012, 24, 2817-2822.	6.7	73
38	Synthesis, copolymerization and peptide-modification of carboxylic acid-functionalized 3,4-ethylenedioxythiophene (EDOTacid) for neural electrode interfaces. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4288-4293.	2.4	72
39	Janus-Compartmental Alginate Microbeads Having Polydiacetylene Liposomes and Magnetic Nanoparticles for Visual Lead(II) Detection. ACS Applied Materials & Samp; Interfaces, 2014, 6, 10631-10637.	8.0	67
40	Design principles for the energy level tuning in donor/acceptor conjugated polymers. Physical Chemistry Chemical Physics, 2019, 21, 789-799.	2.8	63
41	Polydiacetylene Liposome Microarray Toward Influenza A Virus Detection: Effect of Target Size on Turnâ€On Signaling. Macromolecular Rapid Communications, 2013, 34, 743-748.	3.9	62
42	Effect of the Molecular Size of Analytes on Polydiacetylene Chromism. Advanced Functional Materials, 2010, 20, 1397-1403.	14.9	61
43	Highly Emissive Selfâ€assembled Organic Nanoparticles having Dual Color Capacity for Targeted Immunofluorescence Labeling. Advanced Materials, 2008, 20, 1117-1121.	21.0	57
44	Dynamic Sequential Layer-by-Layer Deposition Method for Fast and Region-Selective Multilayer Thin Film Fabrication. Langmuir, 2005, 21, 8532-8538.	3.5	56
45	Multi-luminescent switching of metal-free organic phosphors for luminometric detection of organic solvents. Chemical Science, 2016, 7, 2359-2363.	7.4	56
46	A New Synthetic Approach for Polybenzoxazole and Light-Induced Fluorescent Patterning on Its Film. Macromolecules, 2005, 38, 9427-9433.	4.8	53
47	Effect of Polymer Aggregation on the Open Circuit Voltage in Organic Photovoltaic Cells: Aggregation-Induced Conjugated Polymer Gel and its Application for Preventing Open Circuit Voltage Drop. ACS Applied Materials & Interfaces, 2011, 3, 674-680.	8.0	53
48	One-Pot Synthesis of Poly(<i>N</i> -vinylpyrrolidone)- <i>b</i> -poly(ε-caprolactone) Block Copolymers Using a Dual Initiator for RAFT Polymerization and ROP. Macromolecules, 2013, 46, 1291-1295.	4.8	53
49	Design of Polydiacetylene-Phospholipid Supramolecules for Enhanced Stability and Sensitivity. Langmuir, 2012, 28, 7551-7556.	3.5	52
50	Sensitive and Selective Label-Free DNA Detection by Conjugated Polymer-Based Microarrays and Intercalating Dye. Chemistry of Materials, 2008, 20, 2848-2850.	6.7	51
51	Biomimetic detection of aminoglycosidic antibiotics using polydiacetylene–phospholipids supramolecules. Chemical Communications, 2012, 48, 5313.	4.1	51
52	Conjugated Polyelectrolyteâ€Antibody Hybrid Materials for Highly Fluorescent Live Cell″maging. Advanced Materials, 2012, 24, 2479-2484.	21.0	49
53	Stimuli-Responsive Matrix-Assisted Colorimetric Water Indicator of Polydiacetylene Nanofibers. ACS Applied Materials & Samp; Interfaces, 2015, 7, 20342-20348.	8.0	49
54	Phosphorescence in Bromobenzaldehyde Can Be Enhanced through Intramolecular Heavy Atom Effect. Journal of Physical Chemistry C, 2017, 121, 3771-3777.	3.1	49

#	Article	IF	Citations
55	Design Principle of Conjugated Polyelectrolytes to Make Them Waterâ€Soluble and Highly Emissive. Advanced Functional Materials, 2012, 22, 1076-1086.	14.9	45
56	A Novel Optical Ozone Sensor Based on Purely Organic Phosphor. ACS Applied Materials & Samp; Interfaces, 2015, 7, 2993-2997.	8.0	45
57	Synthesis and functionalization of a highly fluorescent and completely water-soluble poly(para-phenyleneethynylene) copolymer for bioconjugation. Chemical Communications, 2006, , 1983.	4.1	44
58	Metal-Free Organic Phosphors toward Fast and Efficient Room-Temperature Phosphorescence. Accounts of Chemical Research, 2022, 55, 1573-1585.	15.6	44
59	Charge Transfer as the Key Parameter Affecting the Color Purity of Thermally Activated Delayed Fluorescence Emitters. ACS Applied Materials & Emp.; Interfaces, 2021, 13, 28529-28537.	8.0	43
60	Design Considerations for Electrode Buffer Layer Materials in Polymer Solar Cells. ACS Applied Materials & Samp; Interfaces, 2014, 6, 14964-14974.	8.0	42
61	Roomâ€Temperatureâ€Phosphorescenceâ€Based Dissolved Oxygen Detection by Coreâ€Shell Polymer Nanoparticles Containing Metalâ€Free Organic Phosphors. Angewandte Chemie, 2017, 129, 16425-16429.	2.0	40
62	Mussel-Inspired Universal Bioconjugation of Polydiacetylene Liposome for Droplet-Array Biosensors. ACS Applied Materials & Samp; Interfaces, 2017, 9, 42210-42216.	8.0	40
63	Chaotic Organic Crystal Phosphorescent Patterns for Physical Unclonable Functions. Advanced Materials, 2021, 33, e2102542.	21.0	37
64	One-pot synthesis of poly(N-vinylcaprolactam)-based biocompatible block copolymers using a dual initiator for ROP and RAFT polymerization. Polymer, 2013, 54, 6119-6124.	3.8	35
65	Universal Design Principles for Cascade Heterojunction Solar Cells with High Fill Factors and Internal Quantum Efficiencies Approaching 100%. Advanced Energy Materials, 2014, 4, 1400216.	19.5	35
66	Organic Light-Emitting Diode Employing Metal-Free Organic Phosphor. ACS Applied Materials & Samp; Interfaces, 2020, 12, 6137-6143.	8.0	35
67	Design principles to tune the optical properties of 1,3,4-oxadiazole-containing molecules. Journal of Materials Chemistry, 2007, 17, 1981.	6.7	32
68	Humidity-dependent thermoelectric properties of poly(3,4-ethylenedioxythiophene):poly(styrene) Tj ETQq0 0 0 r	gBŢ_¦Over	lock 10 Tf 50
69	Signal Amplifying Conjugated Polymer-Based Solid-State DNA Sensors. Macromolecules, 2006, 39, 7461-7463.	4.8	31
70	Photoresponsive Luminescence Switching of Metalâ€Free Organic Phosphors Doped Polymer Matrices. Advanced Optical Materials, 2020, 8, 2000654.	7.3	30
71	Conjugated Polymers Combined with a Molecular Beacon for Labelâ€Free and Selfâ€6ignalâ€Amplifying DNA Microarrays. Advanced Functional Materials, 2009, 19, 3317-3325.	14.9	29
72	Recovering lost excitons in organic photovoltaics using a transparent dissociation layer. Journal of Applied Physics, 2013, 113, .	2.5	28

#	Article	IF	CITATIONS
73	Chemically and Photochemically Stable Conjugated Poly(oxadiazole) Derivatives:Â A Comparison with Polythiophenes and Poly(p-phenyleneethynylenes). Macromolecules, 2007, 40, 6457-6463.	4.8	26
74	Ultrafast Spectroscopic Study of Donor–Acceptor Benzodithiophene Light Harvesting Organic Conjugated Polymers. Journal of Physical Chemistry C, 2016, 120, 9088-9096.	3.1	26
75	Control of Energy Transfer to CdTe Nanowires via Conjugated Polymer Orientation. Journal of Physical Chemistry C, 2009, 113, 109-116.	3.1	25
76	Indacenodithiazole-Ladder-Type Bridged Di(thiophene)-Difluoro-Benzothiadiazole-Conjugated Copolymers as Ambipolar Organic Field-Effect Transistors. Chemistry of Materials, 2019, 31, 9488-9496.	6.7	25
77	Metalâ€Free Organic Triplet Emitters with On–Off Switchable Excited State Intramolecular Proton Transfer. Advanced Functional Materials, 2022, 32, .	14.9	25
78	Design of a simple paper-based colorimetric biosensor using polydiacetylene liposomes for neomycin detection. Analyst, The, 2018, 143, 4623-4629.	3.5	24
79	Remote Biosensing with Polychromatic Optical Waveguide Using Blue Lightâ€Emitting Organic Nanowires Hybridized with Quantum Dots. Advanced Functional Materials, 2014, 24, 3684-3691.	14.9	23
80	Poly(5,6-dimethoxyindole-2-carboxylic acid) (PDMICA): A Melanin-Like Polymer with Unique Electrochromic and Structural Properties. Macromolecules, 2010, 43, 3770-3774.	4.8	21
81	High-Performing Thin-Film Transistors in Large Spherulites of Conjugated Polymer Formed by Epitaxial Growth on Removable Organic Crystalline Templates. ACS Applied Materials & Diterfaces, 2015, 7, 13431-13439.	8.0	21
82	Mass and Energy Transport in Conjugated Polymer Langmuirâ^Blodgett Films:Â Conductivity, Fluorescence, and UVâ^Vis Studies. Macromolecules, 2001, 34, 2315-2319.	4.8	20
83	Effect of axial halogen substitution on the performance of subphthalocyanine based organic photovoltaic cells. Organic Electronics, 2014, 15, 3660-3665.	2.6	19
84	Highly sensitive turn-on biosensors by regulating fluorescent dye assembly on liposome surfaces. Chemical Communications, 2015, 51, 10229-10232.	4.1	18
85	Heavy atom oriented orbital angular momentum manipulation in metal-free organic phosphors. Chemical Science, 2022, 13, 789-797.	7.4	18
86	A conjugated polymer–peptide hybrid system for prostate-specific antigen (PSA) detection. Chemical Communications, 2013, 49, 4528.	4.1	17
87	The effects of extended conjugation length of purely organic phosphors on their phosphorescence emission properties. Physical Chemistry Chemical Physics, 2015, 17, 19096-19103.	2.8	17
88	Rapid Light-Driven Color Transition of Novel Photoresponsive Polydiacetylene Molecules. ACS Applied Materials & Samp; Interfaces, 2018, 10, 3164-3169.	8.0	15
89	Dual-mode waveguiding of Raman and luminescence signals in a crystalline organic microplate. Journal of Materials Chemistry C, 2014, 2, 6077-6083.	5. 5	14
90	Polydiacetylene Liposome Microarray toward Facile Measurement of Platelet Activation in Whole Blood. ACS Sensors, 2021, 6, 3170-3175.	7.8	14

#	Article	IF	Citations
91	Directed self-assembly of nanogold using a chemically modified nanopatterned surface. Nanotechnology, 2012, 23, 045602.	2.6	13
92	Conductive hybrid carbon nanotube (CNT)–polythiophene coatings for innovative auditory neuron-multi-electrode array interfacing. RSC Advances, 2016, 6, 41714-41723.	3.6	13
93	Macroscopic alignment of poly(3â€hexylthiophene) for enhanced longâ€range collection of photogenerated carriers. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 180-188.	2.1	13
94	Assembly and alignment of conjugated polymers: materials design, processing, and applications. MRS Communications, 2015, 5, 169-189.	1.8	12
95	Designing interchain and intrachain properties of conjugated polymers for latent optical information encoding. Chemical Science, 2015, 6, 6980-6985.	7.4	12
96	Negative-Index Materials: Optics by Design. MRS Bulletin, 2008, 33, 907-914.	3.5	11
97	Molecular Design Approach Managing Molecular Orbital Superposition for High Efficiency without Color Shift in Thermally Activated Delayed Fluorescent Organic Lightâ€Emitting Diodes. Chemistry - A European Journal, 2019, 25, 1829-1834.	3.3	11
98	Shape Morphable Hydrogel/Elastomer Bilayer for Implanted Retinal Electronics. Micromachines, 2020, 11, 392.	2.9	11
99	Elongation of Fibers from Highly Viscous Dextran Solutions Enables Fabrication of Rapidly Dissolving Drug Carrying Fabrics. Advanced Healthcare Materials, 2015, 4, 313-319.	7.6	10
100	Alignment of Lyotropic Liquid Crystalline Conjugated Polymers in Floating Films. ACS Omega, 2018, 3, 14807-14813.	3.5	10
101	Reduction of open circuit voltage loss in a polymer photovoltaic cell via interfacial molecular design: Insertion of a molecular spacer. Applied Physics Letters, 2013, 103, .	3.3	9
102	Design principles of chemiluminescence (CL) chemodosimeter for self-signaling detection: luminol protective approach. RSC Advances, 2014, 4, 46488-46493.	3.6	9
103	A Novel Mechanism for Chemical Sensing Based on Solvent–Fluorophore–Substrate Interaction: Highly Selective Alcohol and Water Sensor with Large Fluorescence Signal Contrast. ACS Applied Materials & Samp; Interfaces, 2016, 8, 28124-28129.	8.0	9
104	Recent design strategies for polymer solar cell materials. Pure and Applied Chemistry, 2010, 83, 127-139.	1.9	8
105	Enhanced luminescence and photocurrent of organic microrod/ZnO nanoparticle hybrid system: Nanoscale optical and electrical characteristics. Electronic Materials Letters, 2015, 11, 741-748.	2.2	8
106	Optimization of coupled plasmonic effects for viable phosphorescence of metal-free purely organic phosphor. Journal of Applied Physics, 2017, 122, 153103.	2.5	8
107	Highly sensitive and quantitative biodetection with lipid-polymer hybrid nanoparticles having organic room-temperature phosphorescence. Biosensors and Bioelectronics, 2022, 199, 113889.	10.1	8
108	Effect of molecular structure of polyarylates on the compatibility in polyarylate/poly(vinyl chloride) blends. Journal of Applied Polymer Science, 1998, 70, 2173-2180.	2.6	7

#	Article	IF	CITATIONS
109	Extraordinary Strong Fluorescence Evolution in Phosphor on Graphene. Advanced Materials, 2016, 28, 1657-1662.	21.0	7
110	Optimization of TNT sensory polymers. , 2000, , .		6
111	Controlling Mold Releasing Propensity–The Role of Surface Energy and a Multiple Chain Transfer Agent. ACS Applied Materials & Samp; Interfaces, 2012, 4, 3465-3470.	8.0	6
112	Waveguiding characteristics of surface enhanced Raman scattering signals along crystalline organic semiconducting microrod. Optics Express, 2017, 25, 6215.	3.4	6
113	Molecular Design Approach for Directed Alignment of Conjugated Polymers. Macromolecules, 2019, 52, 6485-6494.	4.8	6
114	Random Copolymers Outperform Gradient and Block Copolymers in Stabilizing Organic Photovoltaics. Advanced Functional Materials, 2019, 29, 1900467.	14.9	6
115	Observation of magneto-electric rectification at non-relativistic intensities. Nature Communications, 2020, 11, 5296.	12.8	6
116	Hydrogen-Bonding-Mediated Molecular Vibrational Suppression for Enhancing the Fluorescence Quantum Yield Applicable for Visual Phenol Detection. ACS Applied Materials & Detection. ACS Applied Materials & Detection. Security 13, 54339-54347.	8.0	6
117	Chorioretinal Hypoxia Detection Using Lipid-Polymer Hybrid Organic Room-Temperature Phosphorescent Nanoparticles. ACS Applied Materials & Early; Interfaces, 2022, 14, 18182-18193.	8.0	6
118	Plasmon-enhanced phosphorescence of hybrid thin films of metal-free purely organic phosphor and silver nanoparticles. Chemical Physics Letters, 2017, 676, 134-139.	2.6	5
119	Controlled alignment of polymer chains near the semiconductor-dielectric interface. Organic Electronics, 2020, 76, 105484.	2.6	5
120	Optical Properties of 4-Bromobenzaldehyde Derivatives in Chloroform Solution. Journal of Physical Chemistry A, 2014, 118, 6914-6921.	2.5	4
121	Morphological control of conjugated polymers by additive annealing for solar cell applications. Synthetic Metals, 2016, 211, 25-29.	3.9	4
122	Work Function Modification via Combined Chargeâ€Based Throughâ€Space Interaction and Surface Interaction. Advanced Materials Interfaces, 2018, 5, 1800471.	3.7	4
123	Optical torque induces magnetism at the molecular level. Optics Express, 2019, 27, 21295.	3.4	4
124	Selfâ€Erasable and Rewritable Optoexcitonic Platform for Antitamper Hardware. Advanced Optical Materials, 2020, 8, 2001287.	7.3	3
125	Amplifying the Sensitivity of Polydiacetylene Sensors: The Dummy Molecule Approach. ACS Applied Materials & Samp; Interfaces, 2022, 14, 14561-14567.	8.0	3
126	Optical Waveguiding: Remote Biosensing with Polychromatic Optical Waveguide Using Blue Light-Emitting Organic Nanowires Hybridized with Quantum Dots (Adv. Funct. Mater. 24/2014). Advanced Functional Materials, 2014, 24, 3683-3683.	14.9	2

#	Article	IF	CITATIONS
127	Fullerene-Functionalized Poly(3-hexylthiophene) Additive Stabilizes Conjugated Polymer–Fullerene Blend Morphologies. ACS Applied Polymer Materials, 0, , .	4.4	2
128	Assemblies of Conjugated Polymers. Intermolecular and Intramolecular Effects on the Photophysical Properties of Conjugated Polymers. ChemInform, 2003, 34, no.	0.0	1
129	Conjugated Polymer-Based Flexible Photovoltaic Cells with Controlled Nanostructures. Materials Research Society Symposia Proceedings, 2006, 974, 1.	0.1	1
130	Mercury Biosensors: Polydiacetylene-Liposome Microarrays for Selective and Sensitive Mercury(II) Detection (Adv. Mater. 36/2009). Advanced Materials, 2009, 21, NA-NA.	21.0	1
131	Solution processing of polymer solar cells: towards continuous vacuum-free production. Journal of Materials Science: Materials in Electronics, 2021, 32, 11367-11392.	2.2	1
132	Water-soluble Conjugated Poly(p-phenylene ethynylene)s: Synthesis and Cell Imaging. Porrime, 2015, 39, 940.	0.2	1
133	Monolayer Behavior of Poly(p-pheneyleneethynylene) End-Capped with Thioacetate Groups. Macromolecules, 2006, 39, 9658-9660.	4.8	0
134	Sensors: Colorimetric Detection of Warfare Gases by Polydiacetylenes Toward Equipment-Free Detection (Adv. Funct. Mater. 8/2012). Advanced Functional Materials, 2012, 22, 1768-1768.	14.9	0
135	Macromol. Rapid Commun. 9/2013. Macromolecular Rapid Communications, 2013, 34, 804-804.	3.9	0
136	Abstract 376: Capture and release of circulating tumor cells by temperature-sensitive graphene oxide-polymer composite. , 2015 , , .		0